<< Chapter < Page Chapter >> Page >

We can calculate a partial derivative of a function of three variables using the same idea we used for a function of two variables. For example, if we have a function f of x , y , and z , and we wish to calculate f / x , then we treat the other two independent variables as if they are constants, then differentiate with respect to x .

Calculating partial derivatives for a function of three variables

Use the limit definition of partial derivatives to calculate f / x for the function

f ( x , y , z ) = x 2 3 x y + 2 y 2 4 x z + 5 y z 2 12 x + 4 y 3 z .

Then, find f / y and f / z by setting the other two variables constant and differentiating accordingly.

We first calculate f / x using [link] , then we calculate the other two partial derivatives by holding the remaining variables constant. To use the equation to find f / x , we first need to calculate f ( x + h , y , z ) :

f ( x + h , y , z ) = ( x + h ) 2 3 ( x + h ) y + 2 y 2 4 ( x + h ) z + 5 y z 2 12 ( x + h ) + 4 y 3 z = x 2 + 2 x h + h 2 3 x y 3 x h + 2 y 2 4 x z 4 h z + 5 y z 2 12 x 12 h + 4 y 3 z

and recall that f ( x , y , z ) = x 2 3 x y + 2 y 2 4 z x + 5 y z 2 12 x + 4 y 3 z . Next, we substitute these two expressions into the equation:

f x = lim h 0 [ x 2 + 2 x h + h 2 3 x y 3 h y + 2 y 2 4 x z 4 h z + 5 y z 2 12 x 12 h + 4 y 3 z h x 2 3 x y + 2 y 2 4 x z + 5 y z 2 12 x + 4 y 3 z h ] = lim h 0 [ 2 x h + h 2 3 h y 4 h z 12 h h ] = lim h 0 [ h ( 2 x + h 3 y 4 z 12 ) h ] = lim h 0 ( 2 x + h 3 y 4 z 12 ) = 2 x 3 y 4 z 12.

Then we find f / y by holding x and z constant. Therefore, any term that does not include the variable y is constant, and its derivative is zero. We can apply the sum, difference, and power rules for functions of one variable:

y [ x 2 3 x y + 2 y 2 4 x z + 5 y z 2 12 x + 4 y 3 z ] = y [ x 2 ] y [ 3 x y ] + y [ 2 y 2 ] y [ 4 x z ] + y [ 5 y z 2 ] y [ 12 x ] + y [ 4 y ] y [ 3 z ] = 0 3 x + 4 y 0 + 5 z 2 0 + 4 0 = −3 x + 4 y + 5 z 2 + 4.

To calculate f / z , we hold x and y constant and apply the sum, difference, and power rules for functions of one variable:

z [ x 2 3 x y + 2 y 2 4 x z + 5 y z 2 12 x + 4 y 3 z ] = z [ x 2 ] z [ 3 x y ] + z [ 2 y 2 ] z [ 4 x z ] + z [ 5 y z 2 ] z [ 12 x ] + z [ 4 y ] z [ 3 z ] = 0 0 + 0 4 x + 10 y z 0 + 0 3 = −4 x + 10 y z 3.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the limit definition of partial derivatives to calculate f / x for the function

f ( x , y , z ) = 2 x 2 4 x 2 y + 2 y 2 + 5 x z 2 6 x + 3 z 8 .

Then find f / y and f / z by setting the other two variables constant and differentiating accordingly.

f x = 4 x 8 x y + 5 z 2 6 , f y = −4 x 2 + 4 y , f z = 10 x z + 3

Got questions? Get instant answers now!

Calculating partial derivatives for a function of three variables

Calculate the three partial derivatives of the following functions.

  1. f ( x , y , z ) = x 2 y 4 x z + y 2 x 3 y z
  2. g ( x , y , z ) = sin ( x 2 y z ) + cos ( x 2 y z )

In each case, treat all variables as constants except the one whose partial derivative you are calculating.

  1. f x = x [ x 2 y 4 x z + y 2 x 3 y z ] = x ( x 2 y 4 x z + y 2 ) ( x 3 y z ) ( x 2 y 4 x z + y 2 ) x ( x 3 y z ) ( x 3 y z ) 2 = ( 2 x y 4 z ) ( x 3 y z ) ( x 2 y 4 x z + y 2 ) ( 1 ) ( x 3 y z ) 2 = 2 x 2 y 6 x y 2 z 4 x z + 12 y z 2 x 2 y + 4 x z y 2 ( x 3 y z ) 2 = x 2 y 6 x y 2 z 4 x z + 12 y z 2 + 4 x z y 2 ( x 3 y z ) 2
    f y = y [ x 2 y 4 x z + y 2 x 3 y z ] = y ( x 2 y 4 x z + y 2 ) ( x 3 y z ) ( x 2 y 4 x z + y 2 ) y ( x 3 y z ) ( x 3 y z ) 2 = ( x 2 + 2 y ) ( x 3 y z ) ( x 2 y 4 x z + y 2 ) ( −3 z ) ( x 3 y z ) 2 = x 3 3 x 2 y z + 2 x y 6 y 2 z + 3 x 2 y z 12 x z 2 + 3 y 2 z ( x 3 y z ) 2 = x 3 + 2 x y 3 y 2 z 12 x z 2 ( x 3 y z ) 2
    f z = z [ x 2 y 4 x z + y 2 x 3 y z ] = z ( x 2 y 4 x z + y 2 ) ( x 3 y z ) ( x 2 y 4 x z + y 2 ) z ( x 3 y z ) ( x 3 y z ) 2 = ( −4 x ) ( x 3 y z ) ( x 2 y 4 x z + y 2 ) ( −3 y ) ( x 3 y z ) 2 = −4 x 2 + 12 x y z + 3 x 2 y 2 12 x y z + 3 y 3 ( x 3 y z ) 2 = −4 x 2 + 3 x 2 y 2 + 3 y 3 ( x 3 y z ) 2
  2. f x = x [ sin ( x 2 y z ) + cos ( x 2 y z ) ] = ( cos ( x 2 y z ) ) x ( x 2 y z ) ( sin ( x 2 y z ) ) x ( x 2 y z ) = 2 x y cos ( x 2 y z ) 2 x sin ( x 2 y z ) f y = y [ sin ( x 2 y z ) + cos ( x 2 y z ) ] = ( cos ( x 2 y z ) ) y ( x 2 y z ) ( sin ( x 2 y z ) ) y ( x 2 y z ) = x 2 cos ( x 2 y z ) + z sin ( x 2 y z ) f z = z [ sin ( x 2 y z ) + cos ( x 2 y z ) ] = ( cos ( x 2 y z ) ) z ( x 2 y z ) ( sin ( x 2 y z ) ) z ( x 2 y z ) = cos ( x 2 y z ) + y sin ( x 2 y z )
Got questions? Get instant answers now!
Got questions? Get instant answers now!
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask