<< Chapter < Page Chapter >> Page >

Finding the inverse laplace transform

Using transform tables

The inverse Laplace transform, given by

x ( t ) = 1 2 π j σ - j σ + j X ( s ) e s t d s

can be found by directly evaluating the above integral. However since this requires a background in the theory of complex variables, which is beyond the scope of this book, we will not be directly evaluating the inverse Laplace transform. Instead, we will utilize the Laplace transform pairs and properties . Consider the following examples:

Example 3.1 Find the inverse Laplace transform of

X ( s ) = e - 10 s s + 5

By looking at the table of Laplace transform properties we find that multiplication by e - 10 s corresponds to a time delay of 10 sec. Then from the table of Laplace transform pairs , we see that

1 s + 5

corresponds to the Laplace transform of the exponential signal e - 5 t u ( t ) . Therefore we must have

x ( t ) = e - 5 ( t - 10 ) u ( t - 10 )

Example 3.2 Find the inverse Laplace transform of

X ( s ) = 1 ( s + 2 ) 2

First we note that from the table of Laplace transform pairs , the Laplace transform of t u ( t ) is

1 s 2

Then using the s -shift property in the table of Laplace transform properties gives

x ( t ) = t e - 2 t u ( t )

Also, the same answer may be arrived at by combining the Laplace transform of e - 2 t u ( t ) with the multiplication by t property.

Partial fraction expansions

Partial fraction expansions are useful when we can express the Laplace transform in the form of a rational function ,

X ( s ) = b q s q + b q - 1 s q - 1 + + b 1 s + b 0 a p s p + a p - 1 s p - 1 + + a 1 s + a 0 = B ( s ) A ( s )

A rational function is a ratio of two polynomials. The numerator polynomial B ( s ) has order q , i.e., the largest power of s in this polynomial is q , while the denominator polynomial has order p . The partial fraction expansion also requires that the Laplace transform be a proper rational function, which means that q < p . Since B ( s ) and A ( s ) can be factored, we can write

X ( s ) = ( s - β 1 ) ( s - β 2 ) ( s - β q ) ( s - α 1 ) ( s - α 2 ) ( s - α p )

The β i , i = 1 , 2 , ... , q are the roots of B ( s ) , and are called the zeros of X ( s ) . The roots of A ( s ) , are α i , i = 1 , ... , p and are called the poles of X ( s ) . If we evaluate X ( s ) at one of the zeros we get X ( β i ) = 0 , i = 1 , ... , q . Similarly, evaluating X ( s ) at a pole gives The actual sign would need to be evaluated at some value of s that is sufficiently close to the pole. X ( α i ) = ± , i = 1 , ... , p . The partial fraction expansion of a Laplace transform will usually involve relatively simple terms whose inverse Laplace transforms can be easily determined from a table of Laplace transforms. We must consider several different cases which depend on whether the poles are distinct.

Distinct Poles:

When all of the poles are distinct (i.e. α i α j , i j ) then we can use the following partial fraction expansion:

X ( s ) = A 1 s - α 1 + A 2 s - α 2 + + A p s - α p

The coefficients, A i , i = 1 , ... , p can then be found using the following formula

A i = X ( s ) ( s - α i ) s = α i , i = 1 , ... , p

Equation [link] is easily derived by clearing fractions in [link] . The inverse Fourier transform of X ( s ) can then be easily found since each of the terms in the right-hand side of [link] is the Laplace transform of an exponential signal. This method is called the cover up method .

Example 3.3 Find the inverse Laplace transform of

X ( s ) = 2 s - 10 s 2 + 3 s + 2 = 2 s - 10 ( s + 1 ) ( s + 2 )

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals, systems, and society. OpenStax CNX. Oct 07, 2012 Download for free at http://cnx.org/content/col10965/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals, systems, and society' conversation and receive update notifications?

Ask