Making connections: take-home experiment—electrical energy use inventory
1) Make a list of the power ratings on a range of appliances in your home or room. Explain why something like a toaster has a higher rating than a digital clock. Estimate the energy consumed by these appliances in an average day (by estimating their time of use). Some appliances might only state the operating current. If the household voltage is 120 V, then use
. 2) Check out the total wattage used in the rest rooms of your school’s floor or building. (You might need to assume the long fluorescent lights in use are rated at 32 W.) Suppose that the building was closed all weekend and that these lights were left on from 6 p.m. Friday until 8 a.m. Monday. What would this oversight cost? How about for an entire year of weekends?
Section summary
Electric power
is the rate (in watts) that energy is supplied by a source or dissipated by a device.
Three expressions for electrical power are
and
The energy used by a device with a power
over a time
is
.
Conceptual questions
Why do incandescent lightbulbs grow dim late in their lives, particularly just before their filaments break?
The power dissipated in a resistor is given by
, which means power decreases if resistance increases. Yet this power is also given by
, which means power increases if resistance increases. Explain why there is no contradiction here.
Problem exercises
What is the power of a
lightning bolt having a current of
?
What power is supplied to the starter motor of a large truck that draws 250 A of current from a 24.0-V battery hookup?
A charge of 4.00 C of charge passes through a pocket calculator’s solar cells in 4.00 h. What is the power output, given the calculator’s voltage output is 3.00 V? (See
[link] .)
How many watts does a flashlight that has
pass through it in 0.500 h use if its voltage is 3.00 V?
Find the power dissipated in each of these extension cords: (a) an extension cord having a
resistance and through which 5.00 A is flowing; (b) a cheaper cord utilizing thinner wire and with a resistance of
(a) 1.50 W
(b) 7.50 W
Verify that the units of a volt-ampere are watts, as implied by the equation
.
Show that the units
, as implied by the equation
.
Show that the units
, as implied by the equation
.
Verify the energy unit equivalence that
.
Electrons in an X-ray tube are accelerated through
and directed toward a target to produce X-rays. Calculate the power of the electron beam in this tube if it has a current of 15.0 mA.
An electric water heater consumes 5.00 kW for 2.00 h per day. What is the cost of running it for one year if electricity costs
? See
[link] .
$438/y
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?