<< Chapter < Page Chapter >> Page >
This is a general overview of how to solve simple electrical engineering problems.

A periodic signal, such as the half-wave rectified sinusoid,consists of a sum of elemental sinusoids. A plot of the Fourier coefficients as a function of the frequency index, such as shownin [link] , displays the signal's spectrum . The word "spectrum" implies that the independent variable, here k , corresponds somehow to frequency. Each coefficient is directly related to a sinusoidhaving a frequency of k T . Thus, if we half-wave rectified a 1 kHz sinusoid, k 1 corresponds to 1 kHz, k 2 to 2 kHz, etc.

Fourier series spectrum of a half-wave rectified sine wave

The Fourier series spectrum of a half-wave rectified sinusoid is shown. The index indicates themultiple of the fundamental frequency at which the signal has energy.

A subtle, but very important, aspect of the Fourier spectrum isits uniqueness : You can unambiguously find the spectrum from the signal( decomposition ) and the signal from the spectrum( composition ). Thus, any aspect of the signal can be found from the spectrumand vice versa. A signal's frequency domain expression is its spectrum . A periodic signal can be defined either in the time domain (as a function) or in thefrequency domain (as a spectrum).

A fundamental aspect of solving electrical engineering problems is whether the time or frequency domain provides themost understanding of a signal's properties and the simplest way of manipulatingit. The uniqueness property says that either domain can provide the right answer.As a simple example, suppose we want to know the (periodic) signal's maximum value. Clearly the time domain provides theanswer directly. To use a frequency domain approach would require us to find the spectrum, form the signal from thespectrum and calculate the maximum; we're back in the time domain!

Another feature of a signal is its average power . A signal's instantaneous power is defined to be its square. Theaverage power is the average of the instantaneous power over some time interval. For a periodic signal, the natural timeinterval is clearly its period; for nonperiodic signals, a better choice would be entire time or time from onset. For aperiodic signal, the average power is the square of its root-mean-squared (rms) value. We define the rms value of a periodic signal to be

rms s 1 T t 0 T s t 2
and thus its average power is
power s rms s 2 1 T t 0 T s t 2

What is the rms value of the half-wave rectified sinusoid?

The rms value of a sinusoid equals its amplitude divided by 2 2 . As a half-wave rectified sine wave is zero during half ofthe period, its rms value is A 2 since the integral of the squared half-wave rectified sine wave equals half that of a squared sinusoid.

Got questions? Get instant answers now!

To find the average power in the frequency domain, we need to substitute the spectral representation of the signal into thisexpression. power s 1 T t 0 T a 0 k 1 a k 2 k t T k 1 b k 2 k t T 2 The square inside the integral will contain all possible pairwise products. However, the orthogonality properties say that most of these crossterms integrate to zero. Thesurvivors leave a rather simple expression for the power we seek.

power s a 0 2 1 2 k 1 a k 2 b k 2

Power spectrum of a half-wave rectified sinusoid

Power spectrum of a half-wave rectified sinusoid.

It could well be that computing this sum is easier than integrating the signal's square. Furthermore, the contributionof each term in the Fourier series toward representing the signal can be measured by its contribution to the signal'saverage power. Thus, the power contained in a signal at its k th harmonic is a k 2 b k 2 2 . The power spectrum , P s k , such as shown in [link] , plots each harmonic's contribution to the total power.

In high-end audio, deviation of a sine wave from theideal is measured by the total harmonic distortion , which equals the total power in the harmonics higher than thefirst compared to power in the fundamental. Find an expression for the total harmonic distortion for anyperiodic signal. Is this calculation most easily performed in the time or frequency domain?

Total harmonic distortion equals k 2 a k 2 b k 2 a 1 2 b 1 2 . Clearly, this quantity is most easily computed in thefrequency domain. However, the numerator equals the square of the signal's rms value minus the power in the average andthe power in the first harmonic.

Got questions? Get instant answers now!

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask