<< Chapter < Page Chapter >> Page >

Conceptual questions

Which of the following is a vector: a person’s height, the altitude on Mt. Everest, the age of the Earth, the boiling point of water, the cost of this book, the Earth’s population, the acceleration of gravity?

Give a specific example of a vector, stating its magnitude, units, and direction.

What do vectors and scalars have in common? How do they differ?

Two campers in a national park hike from their cabin to the same spot on a lake, each taking a different path, as illustrated below. The total distance traveled along Path 1 is 7.5 km, and that along Path 2 is 8.2 km. What is the final displacement of each camper?

At the southwest corner of the figure is a cabin and in the northeast corner is a lake. A vector S with a length five point zero kilometers connects the cabin to the lake at an angle of 40 degrees north of east. Two winding paths labeled Path 1 and Path 2 represent the routes travelled from the cabin to the lake.

If an airplane pilot is told to fly 123 km in a straight line to get from San Francisco to Sacramento, explain why he could end up anywhere on the circle shown in [link] . What other information would he need to get to Sacramento?

A map of northern California with a circle with a radius of one hundred twenty three kilometers centered on San Francisco. Sacramento lies on the circumference of this circle in a direction forty-five degrees north of east from San Francisco.

Suppose you take two steps A and B (that is, two nonzero displacements). Under what circumstances can you end up at your starting point? More generally, under what circumstances can two nonzero vectors add to give zero? Is the maximum distance you can end up from the starting point A + B the sum of the lengths of the two steps?

Explain why it is not possible to add a scalar to a vector.

If you take two steps of different sizes, can you end up at your starting point? More generally, can two vectors with different magnitudes ever add to zero? Can three or more?

Problems&Exercises

Use graphical methods to solve these problems. You may assume data taken from graphs is accurate to three digits.

Find the following for path A in [link] : (a) the total distance traveled, and (b) the magnitude and direction of the displacement from start to finish.

A map of city is shown. The houses are in form of square blocks of side one hundred and twenty meters each. The path of A extends to three blocks towards north and then one block towards east. It is asked to find out the total distance traveled the magnitude and the direction of the displacement from start to finish.
The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side.

(a) 480 m size 12{"480 m"} {}

(b) 379 m size 12{"379 m"} {} , 18.4º size 12{"18" "." "4º east of north"} {} east of north

Find the following for path B in [link] : (a) the total distance traveled, and (b) the magnitude and direction of the displacement from start to finish.

Find the north and east components of the displacement for the hikers shown in [link] .

north component 3.21 km, east component 3.83 km

Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A size 12{A} {} and B size 12{B} {} , as in [link] , then this problem asks you to find their sum R = A + B size 12{"R = A + B"} {} .)

In this figure coordinate axes are shown. Vector A from the origin towards the negative of x axis is shown. From the head of the vector A another vector B is drawn towards the positive direction of y axis. The resultant R of these two vectors is shown as a vector from the tail of vector A to the head of vector B. This vector R is inclined at an angle theta with the negative x axis.
The two displacements A size 12{A} {} and B size 12{B} {} add to give a total displacement R size 12{R} {} having magnitude R size 12{R} {} and direction θ size 12{θ} {} .

Suppose you first walk 12.0 m in a direction 20º size 12{"20" { size 12{°} } } {} west of north and then 20.0 m in a direction 40.0º size 12{"40" { size 12{°} } } {} south of west. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A size 12{A} {} and B size 12{B} {} , as in [link] , then this problem finds their sum R = A + B size 12{ bold "R = A + B"} {} .)

In the given figure coordinates axes are shown. Vector A with tail at origin is inclined at an angle of twenty degrees with the positive direction of x axis. The magnitude of vector A is twelve meters. Another vector B is starts from the head of vector A and inclined at an angle of forty degrees with the horizontal. The resultant R of the vectors A and B is also drawn from the tail of vector A to the head of vector B. The inclination of vector R is theta with the horizontal.

19 . 5 m size 12{"19" "." "5 m"} {} , 4 . 65º size 12{4 "." "65°"} {} south of west

Repeat the problem above, but reverse the order of the two legs of the walk; show that you get the same final result. That is, you first walk leg B size 12{B} {} , which is 20.0 m in a direction exactly 40º size 12{"20" { size 12{°} } } {} south of west, and then leg A size 12{A} {} , which is 12.0 m in a direction exactly 20º size 12{"20" { size 12{°} } } {} west of north. (This problem shows that A + B = B + A size 12{A+B=B+A} {} .)

(a) Repeat the problem two problems prior, but for the second leg you walk 20.0 m in a direction 40.0º size 12{"40.0" { size 12{°} } } north of east (which is equivalent to subtracting B size 12{B} {} from A size 12{A} {} —that is, to finding R = A B size 12{ bold "R'"=A - B} {} ). (b) Repeat the problem two problems prior, but now you first walk 20.0 m in a direction 40.0º size 12{"40.0" { size 12{°} } } south of west and then 12.0 m in a direction 20.0º size 12{"20.0" { size 12{ ° } } } {} east of south (which is equivalent to subtracting A size 12{A} {} from B size 12{B} {} —that is, to finding R ′′ = B - A = - R size 12{R''= B – A = -R' } {} ). Show that this is the case.

(a) 26 . 6 m size 12{"26" "." "6 m"} {} , 65 . size 12{"65" "." "1º"} {} north of east

(b) 26 . 6 m size 12{"26" "." "6 m"} {} , 65 . size 12{"65" "." "1º"} {} south of west

Show that the order of addition of three vectors does not affect their sum. Show this property by choosing any three vectors A size 12{A} {} , B size 12{B} {} , and C size 12{C} {} , all having different lengths and directions. Find the sum A + B + C size 12{ bold "A + B + C"} {} then find their sum when added in a different order and show the result is the same. (There are five other orders in which A size 12{A} {} , B size 12{B} {} , and C size 12{C} {} can be added; choose only one.)

Show that the sum of the vectors discussed in [link] gives the result shown in [link] .

52 . 9 m size 12{"52" "." "9 m"} {} , 90 . size 12{"90" "." "1º"} {} with respect to the x -axis.

Find the magnitudes of velocities v A size 12{v rSub { size 8{A} } } {} and v B size 12{v rSub { size 8{B} } } {} in [link]

On the graph velocity vector V sub A begins at the origin and is inclined to x axis at an angle of twenty two point five degrees. From the head of vector V sub A another vector V sub B begins. The resultant of the two vectors, labeled V sub tot, is inclined to vector V sub A at twenty six point five degrees and to the vector V sub B at twenty three point zero degrees. V sub tot has a magnitude of 6.72 meters per second.
The two velocities v A size 12{v rSub { size 8{A} } } {} and v B size 12{v rSub { size 8{B} } } {} add to give a total v tot size 12{v rSub { size 8{"tot"} } } {} .

Find the components of v tot size 12{v rSub { size 8{"tot"} } } {} along the x - and y -axes in [link] .

x -component 4.41 m/s

y -component 5.07 m/s

Find the components of v tot size 12{v rSub { size 8{"tot"} } } {} along a set of perpendicular axes rotated 30º size 12{"30º"} {} counterclockwise relative to those in [link] .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Une: physics for the health professions. OpenStax CNX. Aug 20, 2014 Download for free at http://legacy.cnx.org/content/col11697/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Une: physics for the health professions' conversation and receive update notifications?

Ask