<< Chapter < Page Chapter >> Page >

Even given the finite return on effort suggested by Amdahl’s Law, tuning a program with a sharp profile can be rewarding. Programs with flat profiles are much more difficult to tune. These are often system codes, nonnumeric applications, and varieties of numerical codes without matrix solutions. It takes a global tuning approach to reduce, to any justifiable degree, the runtime of a program with a flat profile. For instance, you can sometimes optimize instruction cache usage, which is complicated because of the program’s equal distribution of activity among a large number of routines. It can also help to reduce subroutine call overhead by folding callees into callers. Occasionally, you can find a memory reference problem that is endemic to the whole program — and one that can be fixed all at once.

When you look at a profile, you might find an unusually large percentage of time spent in the library routines such as log , exp , or sin . Often these functions are done in software routines rather than inline. You may be able to rewrite your code to eliminate some of these operations. Another important pattern to look for is when a routine takes far longer than you expect. Unexpected execution time may indicate you are accessing memory in a pattern that is bad for performance or that some aspect of the code cannot be optimized properly.

In any case, to get a profile, you need a profiler. One or two subroutine profilers come standard with the software development environments on all UNIX machines. We discuss two of them: prof and gprof . In addition, we mention a few line-by-line profilers. Subroutine profilers can give you a general overall view of where time is being spent. You probably should start with prof , if you have it (most machines do). Otherwise, use gprof . After that, you can move to a line-by- line profiler if you need to know which statements take the most time.

Prof

prof is the most common of the UNIX profiling tools. In a sense, it is an extension of the compiler, linker, and object libraries, plus a few extra utilities, so it is hard to look at any one thing and say “this profiles your code.” prof works by periodically sampling the program counter as your application runs. To enable profiling, you must recompile and relink using the –p flag. For example, if your program has two modules, stuff.c and junk.c , you need to compile and link according to the following code:


% cc stuff.c -p -O -c % cc junk.c -p -O -c% cc stuff.o junk.o -p -o stuff

This creates a stuff binary that is ready for profiling. You don’t need to do anything special to run it. Just treat it normally by entering stuff . Because runtime statistics are being gathered, it takes a little longer than usual to execute. Remember: code with profiling enabled takes longer to run. You should recompile and relink the whole thing without the –p flag when you have finished profiling. At completion, there is a new file called mon.out in the directory where you ran it. This file contains the history of stuff in binary form, so you can’t look at it directly. Use the prof utility to read mon.out and create a profile of stuff . By default, the information is written to your screen on standard output, though you can easily redirect it to a file:

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask