<< Chapter < Page Chapter >> Page >
This module establishes a number of results concerning various L1 minimization algorithms designed for sparse signal recovery from noisy measurements. The results in this module apply to both bounded noise as well as Gaussian (or more generally, sub-Gaussian) noise.

The ability to perfectly reconstruct a sparse signal from noise-free measurements represents a promising result. However, in most real-world systems the measurements are likely to be contaminated by some form of noise. For instance, in order to process data in a computer we must be able to represent it using a finite number of bits, and hence the measurements will typically be subject to quantization error. Moreover, systems which are implemented in physical hardware will be subject to a variety of different types of noise depending on the setting.

Perhaps somewhat surprisingly, one can show that it is possible to modify

x ^ = arg min z z 1 subject to z B ( y ) .

to stably recover sparse signals under a variety of common noise models  [link] , [link] , [link] . As might be expected, the restricted isometry property (RIP) is extremely useful in establishing performance guarantees in noise.

In our analysis we will make repeated use of Lemma 1 from "Noise-free signal recovery" , so we repeat it here for convenience.

Suppose that Φ satisfies the RIP of order 2 K with δ 2 K < 2 - 1 . Let x , x ^ R N be given, and define h = x ^ - x . Let Λ 0 denote the index set corresponding to the K entries of x with largest magnitude and Λ 1 the index set corresponding to the K entries of h Λ 0 c with largest magnitude. Set Λ = Λ 0 Λ 1 . If x ^ 1 x 1 , then

h 2 C 0 σ K ( x ) 1 K + C 1 Φ h Λ , Φ h h Λ 2 .

where

C 0 = 2 1 - ( 1 - 2 ) δ 2 K 1 - ( 1 + 2 ) δ 2 K , C 1 = 2 1 - ( 1 + 2 ) δ 2 K .

Bounded noise

We first provide a bound on the worst-case performance for uniformly bounded noise, as first investigated in  [link] .

(theorem 1.2 of [link] )

Suppose that Φ satisfies the RIP of order 2 K with δ 2 K < 2 - 1 and let y = Φ x + e where e 2 ϵ . Then when B ( y ) = { z : Φ z - y 2 ϵ } , the solution x ^ to [link] obeys

x ^ - x 2 C 0 σ K ( x ) 1 K + C 2 ϵ ,

where

C 0 = 2 1 - ( 1 - 2 ) δ 2 K 1 - ( 1 + 2 ) δ 2 K , C 2 = 4 1 + δ 2 K 1 - ( 1 + 2 ) δ 2 K .

We are interested in bounding h 2 = x ^ - x 2 . Since e 2 ϵ , x B ( y ) , and therefore we know that x ^ 1 x 1 . Thus we may apply [link] , and it remains to bound Φ h Λ , Φ h . To do this, we observe that

Φ h 2 = Φ ( x ^ - x ) 2 = Φ x ^ - y + y - Φ x 2 Φ x ^ - y 2 + y - Φ x 2 2 ϵ

where the last inequality follows since x , x ^ B ( y ) . Combining this with the RIP and the Cauchy-Schwarz inequality we obtain

Φ h Λ , Φ h Φ h Λ 2 Φ h 2 2 ϵ 1 + δ 2 K h Λ 2 .

Thus,

h 2 C 0 σ K ( x ) 1 K + C 1 2 ϵ 1 + δ 2 K = C 0 σ K ( x ) 1 K + C 2 ϵ ,

completing the proof.

In order to place this result in context, consider how we would recover a sparse vector x if we happened to already know the K locations of the nonzero coefficients, which we denote by Λ 0 . This is referred to as the oracle estimator . In this case a natural approach is to reconstruct the signal using a simple pseudoinverse:

x ^ Λ 0 = Φ Λ 0 y = ( Φ Λ 0 T Φ Λ 0 ) - 1 Φ Λ 0 T y x ^ Λ 0 c = 0 .

The implicit assumption in [link] is that Φ Λ 0 has full column-rank (and hence we are considering the case where Φ Λ 0 is the M × K matrix with the columns indexed by Λ 0 c removed) so that there is a unique solution to the equation y = Φ Λ 0 x Λ 0 . With this choice, the recovery error is given by

x ^ - x 2 = ( Φ Λ 0 T Φ Λ 0 ) - 1 Φ Λ 0 T ( Φ x + e ) - x 2 = ( Φ Λ 0 T Φ Λ 0 ) - 1 Φ Λ 0 T e 2 .

Questions & Answers

how to create a software using Android phone
Wiseman Reply
how
basra
what is the difference between C and C++.
Yan Reply
what is software
Sami Reply
software is a instructions like programs
Shambhu
what is the difference between C and C++.
Yan
yes, how?
Hayder
what is software engineering
Ahmad
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Hayder
what's software processes
Ntege Reply
I haven't started reading yet. by device (hardware) or for improving design Lol? Here. Requirement, Design, Implementation, Verification, Maintenance.
Vernon
I can give you a more valid answer by 5:00 By the way gm.
Vernon
it is all about designing,developing, testing, implementing and maintaining of software systems.
Ehenew
hello assalamualaikum
Sami
My name M Sami I m 2nd year student
Sami
what is the specific IDE for flutter programs?
Mwami Reply
jegudgdtgd my Name my Name is M and I have been talking about iey my papa john's university of washington post I tagged I will be in
Mwaqas Reply
yes
usman
how disign photo
atul Reply
hlo
Navya
hi
Michael
yes
Subhan
Show the necessary steps with description in resource monitoring process (CPU,memory,disk and network)
samuel Reply
What is software engineering
Tafadzwa Reply
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
Alqa Reply
The following text is encoded in base 64. Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr Decode it, and paste the decoded text here
Julian Reply
what to do you mean
Vincent
hello
ALI
how are you ?
ALI
What is the command to list the contents of a directory in Unix and Unix-like operating systems
George Reply
how can i make my own software free of cost
Faizan Reply
like how
usman
hi
Hayder
The name of the author of our software engineering book is Ian Sommerville.
Doha Reply
what is software
Sampson Reply
the set of intruction given to the computer to perform a task
Noor
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?

Ask