<< Chapter < Page Chapter >> Page >

4 b b 1 , 2 b b + 3 . By inspection, the LCD is  ( b 1 ) ( b + 3 ) . Rewrite each fraction with new denominator  ( b 1 ) ( b + 3 ) . ( b 1 ) ( b + 3 ) , ( b 1 ) ( b + 3 ) The denominator of the first rational expression has been multiplied  by  b + 3 , so the numerator  4 b  must be multiplied by  b + 3. 4 b ( b + 3 ) = 4 b 2 + 12 b 4 b 2 + 12 b ( b 1 ) ( b + 3 ) , ( b 1 ) ( b + 3 ) The denominator of the second rational expression has been multiplied  by  b 1 , so the numerator  2 b  must be multiplied by  b 1. 2 b ( b 1 ) = 2 b 2 + 2 b 4 b 2 + 12 b ( b 1 ) ( b + 3 ) , 2 b 2 + 2 b ( b 1 ) ( b + 3 )

6 x x 2 8 x + 15 , 2 x 2 x 2 7 x + 12 . We first find the LCD .  Factor . 6 x ( x 3 ) ( x 5 ) , 2 x 2 ( x 3 ) ( x 4 ) The LCD is  ( x 3 ) ( x 5 ) ( x 4 ) . Rewrite each of these  fractions with new denominator  ( x 3 ) ( x 5 ) ( x 4 ) . ( x 3 ) ( x 5 ) ( x 4 ) , ( x 3 ) ( x 5 ) ( x 4 ) By comparing the denominator of the first fraction with the LCD  we see that we must multiply the numerator  6 x  by  x 4. 6 x ( x 4 ) = 6 x 2 24 x 6 x 2 24 x ( x 3 ) ( x 5 ) ( x 4 ) , ( x 3 ) ( x 5 ) ( x 4 ) By comparing the denominator of the second fraction with the LCD,  we see that we must multiply the numerator  2 x 2  by  x 5. 2 x 2 ( x 5 ) = 2 x 3 + 10 x 2 6 x 2 24 x ( x 3 ) ( x 5 ) ( x 4 ) , 2 x 3 + 10 x 2 ( x 3 ) ( x 5 ) ( x 4 )

These examples have been done step-by-step and include explanations. This makes the process seem fairly long. In practice, however, the process is much quicker.

6 a b a 2 5 a + 4 , a + b a 2 8 a + 16 6 a b ( a 1 ) ( a 4 ) , a + b ( a 4 ) 2 LCD = ( a 1 ) ( a 4 ) 2 . 6 a b ( a 4 ) ( a 1 ) ( a 4 ) 2 , ( a + b ) ( a 1 ) ( a 1 ) ( a 4 ) 2

x + 1 x 3 + 3 x 2 , 2 x x 3 4 x , x 4 x 2 4 x + 4 x + 1 x 2 ( x + 3 ) , 2 x x ( x + 2 ) ( x 2 ) , x 4 ( x 2 ) 2 LCD = x 2 ( x + 3 ) ( x + 2 ) ( x 2 ) 2 . ( x + 1 ) ( x + 2 ) ( x 2 ) 2 x 2 ( x + 3 ) ( x + 2 ) ( x 2 ) 2 , 2 x 2 ( x + 3 ) ( x 2 ) x 2 ( x + 3 ) ( x + 2 ) ( x 2 ) 2 , x 2 ( x + 3 ) ( x + 2 ) ( x 4 ) x 2 ( x + 3 ) ( x + 2 ) ( x 2 ) 2

Practice set c

Change the given rational expressions into rational expressions with the same denominators.

4 x 3 , 7 x 5

4 x 2 x 5 , 7 x 5

2 x x + 6 , x x 1

2 x ( x 1 ) ( x + 6 ) ( x 1 ) , x ( x + 6 ) ( x + 6 ) ( x 1 )

3 b 2 b , 4 b b 2 1

3 ( b + 1 ) b ( b 1 ) ( b + 1 ) , 4 b 2 b ( b 1 ) ( b + 1 )

8 x 2 x 6 , 1 x 2 + x 2

8 ( x 1 ) ( x 3 ) ( x + 2 ) ( x 1 ) , 1 ( x 3 ) ( x 3 ) ( x + 2 ) ( x 1 )

10 x x 2 + 8 x + 16 , 5 x x 2 16

10 x ( x 4 ) ( x + 4 ) 2 ( x 4 ) , 5 x ( x + 4 ) ( x + 4 ) 2 ( x 4 )

2 a b 2 a 3 6 a 2 , 6 b a 4 2 a 3 , 2 a a 2 4 a + 4

2 a 2 b 2 ( a 2 ) 2 a 3 ( a 6 ) ( a 2 ) 2 , 6 b ( a 6 ) ( a 2 ) a 3 ( a 6 ) ( a 2 ) 2 , 2 a 4 ( a 6 ) a 3 ( a 6 ) ( a 2 ) 2

Exercises

For the following problems, replace N with the proper quantity.

3 x = N x 3

3 x 2

4 a = N a 2

2 x = N x y

2 y

7 m = N m s

6 a 5 = N 10 b

12 a b

a 3 z = N 12 z

x 2 4 y 2 = N 20 y 4

5 x 2 y 2

b 3 6 a = N 18 a 5

4 a 5 x 2 y = N 15 x 3 y 3

12 a x y 2

10 z 7 a 3 b = N 21 a 4 b 5

8 x 2 y 5 a 3 = N 25 a 3 x 2

40 x 4 y

2 a 2 = N a 2 ( a 1 )

5 x 3 = N x 3 ( x 2 )

5 ( x 2 )

2 a b 2 = N b 3 b

4 x a = N a 4 4 a 2

4 a x ( a + 2 ) ( a 2 )

6 b 3 5 a = N 10 a 2 30 a

4 x 3 b = N 3 b 5 15 b

4 x ( b 4 5 )

2 m m 1 = N ( m 1 ) ( m + 2 )

3 s s + 12 = N ( s + 12 ) ( s 7 )

3 s ( s 7 )

a + 1 a 3 = N ( a 3 ) ( a 4 )

a + 2 a 2 = N ( a 2 ) ( a 4 )

( a + 2 ) ( a 4 )

b + 7 b 6 = N ( b 6 ) ( b + 6 )

5 m 2 m + 1 = N ( 2 m + 1 ) ( m 2 )

5 m ( m 2 )

4 a + 6 = N a 2 + 5 a 6

9 b 2 = N b 2 6 b + 8

9 ( b 4 )

3 b b 3 = N b 2 11 b + 24

2 x x 7 = N x 2 4 x 21

2 x ( x + 3 )

6 m m + 6 = N m 2 + 10 m + 24

4 y y + 1 = N y 2 + 9 y + 8

4 y ( y + 8 )

x + 2 x 2 = N x 2 4

y 3 y + 3 = N y 2 9

( y 3 ) 2

a + 5 a 5 = N a 2 25

z 4 z + 4 = N z 2 16

( z 4 ) 2

4 2 a + 1 = N 2 a 2 5 a 3

1 3 b 1 = N 3 b 2 + 11 b 4

b + 4

a + 2 2 a 1 = N 2 a 2 + 9 a 5

3 4 x + 3 = N 4 x 2 13 x 12

3 ( x 4 )

b + 2 3 b 1 = N 6 b 2 + 7 b 3

x 1 4 x 5 = N 12 x 2 11 x 5

( x 1 ) ( 3 x + 1 )

3 x + 2 = 3 x 21 N

4 y + 6 = 4 y + 8 N

( y + 6 ) ( y + 2 )

6 a 1 = 6 a 18 N

8 a a + 3 = 8 a 2 40 a N

( a + 3 ) ( a + 5 )

y + 1 y 8 = y 2 2 y 3 N

x 4 x + 9 = x 2 + x 20 N

( x + 9 ) ( x + 5 )

3 x 2 x = N x 2

7 a 5 a = N a 5

7 a

m + 1 3 m = N m 3

k + 6 10 k = N k 10

k 6

For the following problems, convert the given rational expressions to rational expressions having the same denominators.

2 a , 3 a 4

5 b 2 , 4 b 3

5 b b 3 , 4 b 3

8 z , 3 4 z 3

9 x 2 , 1 4 x

36 4 x 2 , x 4 x 2

2 a + 3 , 4 a + 1

2 x + 5 , 4 x 5

2 ( x 5 ) ( x + 5 ) ( x 5 ) , 4 ( x + 5 ) ( x + 5 ) ( x 5 )

1 x 7 , 4 x 1

10 y + 2 , 1 y + 8

10 ( y + 8 ) ( y + 2 ) ( y + 8 ) , y + 2 ( y + 2 ) ( y + 8 )

4 a 2 , a a + 4

3 b 2 , b 2 b + 5

3 ( b + 5 ) b 2 ( b + 5 ) , b 4 b 2 ( b + 5 )

6 b 1 , 5 b 4 b

10 a a 6 , 2 a 2 6 a

10 a 2 a ( a 6 ) , 2 a ( a 6 )

4 x 2 + 2 x , 1 x 2 4

x + 1 x 2 x 6 , x + 4 x 2 + x 2

( x + 1 ) ( x 1 ) ( x 1 ) ( x + 2 ) ( x 3 ) , ( x + 4 ) ( x 3 ) ( x 1 ) ( x + 2 ) ( x 3 )

x 5 x 2 9 x + 20 , 4 x 2 3 x 10

4 b 2 + 5 b 6 , b + 6 b 2 1

4 ( b + 1 ) ( b + 1 ) ( b 1 ) ( b + 6 ) , ( b + 6 ) 2 ( b + 1 ) ( b 1 ) ( b + 6 )

b + 2 b 2 + 6 b + 8 , b 1 b 2 + 8 b + 12

x + 7 x 2 2 x 3 , x + 3 x 2 6 x 7

( x + 7 ) ( x 7 ) ( x + 1 ) ( x 3 ) ( x 7 ) , ( x + 3 ) ( x 3 ) ( x + 1 ) ( x 3 ) ( x 7 )

2 a 2 + a , a + 3 a 2 1

x 2 x 2 + 7 x + 6 , 2 x x 2 + 4 x 12

( x 2 ) 2 ( x + 1 ) ( x 2 ) ( x + 6 ) , 2 x ( x + 1 ) ( x + 1 ) ( x 2 ) ( x + 6 )

x 2 2 x 2 + 5 x 3 , x . 1 5 x 2 + 16 x + 3

2 x 5 , 3 5 x

2 x 5 , 3 x 5

4 a 6 , 5 6 a

6 2 x , 5 x 2

6 x 2 , 5 x 2

k 5 k , 3 k k 5

2 m m 8 , 7 8 m

2 m m 8 , 7 m 8

Excercises for review

( [link] ) Factor m 2 x 3 + m x 2 + m x .

( [link] ) Factor y 2 10 y + 21.

( y 7 ) ( y 3 )

( [link] ) Write the equation of the line that passes through the points ( 1 , 1 ) and ( 4 , 2 ) . Express the equation in slope-intercept form.

( [link] ) Reduce y 2 y 6 y 3 .

y + 2

( [link] ) Find the quotient: x 2 6 x + 9 x 2 x 6 ÷ x 2 + 2 x 15 x 2 + 2 x .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra ii for the community college. OpenStax CNX. Jul 03, 2014 Download for free at http://cnx.org/content/col11671/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra ii for the community college' conversation and receive update notifications?

Ask