The first part of this assignment is brought to you by our unit on
functions . In fact, this part is entirely recycled from that unit.
The following graph shows the temperature throughout the month of March. Actually, I just made this graph up—the numbers do not actually reflect the temperature throughout the month of March. We’re just pretending, OK?
On what days was the temperature exactly
C?
On what days was the temperature below freezing?
On what days was the temperature above freezing?
What is the domain of this graph?
During what time periods was the temperature going up?
During what time periods was the temperature going down?
OK, your memory is now officially refreshed, right? You remember how to look at a graph and see when it is zero, when it is below zero, and when it is above zero.
Now we get to the actual “quadratic inequalities” part. But the good news is, there is nothing new here! First you will graph the function (you already know how to do that). Then you will identify the region(s) where the graph is positive, or negative (you already know how to do that).
Draw a quick sketch of the graph by finding the zeros, and noting whether the function opens up or down.
Now, the inequality asks when that function is>
—that is, when it is positive. Based on your graph, for what
-values is the function positive?
Based on your answer to part (b), choose one
-value for which the inequality
should hold, and one for which it should
not . Check to make sure they both do what they should.
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?