<< Chapter < Page Chapter >> Page >

The third piece of information (corresponding to the third set of hands on the watch), elapsed time , is a measure of the actual (wall clock) time that has passed since the program was started. For programs that spend most of their time computing, the elapsed time should be close to the CPU time. Reasons why elapsed time might be greater are:

  • You are timesharing the machine with other active programs. The uptime command gives you a rough indication of the other activity on your machine. The last three fields tell the average number of processes ready to run during the last 1, 5, and 15 minutes, respectively.
  • Your application performs a lot of I/O.
  • Your application requires more memory bandwidth than is available on the machine.
  • Your program was paging or swapped.

People often record the CPU time and use it as an estimate for elapsed time. Using CPU time is okay on a single CPU machine, provided you have seen the program run when the machine was quiet and noticed the two numbers were very close together. But for multiprocessors, the total CPU time can be far different from the elapsed time. Whenever there is a doubt, wait until you have the machine to your- self and time your program then, using elapsed time. It is very important to produce timing results that can be verified using another run when the results are being used to make important purchasing decisions.

If you are running on a Berkeley UNIX derivative, the C shell’s built-in time command can report a number of other useful statistics. The default form of the output is shown in [link] . Check with your csh manual page for more possibilities.

In addition to figures for CPU and elapsed time, csh time command produces information about CPU utilization, page faults, swaps, blocked I/O operations (usually disk activity), and some measures of how much physical memory our pro- gram occupied when it ran. We describe each of them in turn.

Percent utilization

Percent utilization corresponds to the ratio of elapsed time to CPU time. As we mentioned above, there can be a number of reasons why the CPU utilization wouldn’t be 100% or mighty close. You can often get a hint from the other fields as to whether it is a problem with your program or whether you were sharing the machine when you ran it.

Average real memory utilization

The two average memory utilization measurements shown in [link] characterize the program’s resource requirements as it ran.

The first measurement, shared-memory space , accounts for the average amount of real memory taken by your program’s text segment — the portion that holds the machine instructions. It is called “shared” because several concurrently running copies of a program can share the same text segment (to save memory). Years ago, it was possible for the text segment to consume a significant portion of the memory system, but these days, with memory sizes starting around 32 MB, you have to compile a pretty huge source program and use every bit of it to create a shared-memory usage figure big enough to cause concern. The shared-memory space requirement is usually quite low relative to the amount of memory available on your machine.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask