<< Chapter < Page Chapter >> Page >
A brief discussion of PCA.

Principal component analysis

PCA is essentially just SVD. The only difference is that we usually center the data first using some grand mean before doing SVD. There are three perspectives of views for PCA. Each of them gives different insight on what PCA does.

Low-rank approximation

min Z 1 2 | | X Z | | F 2 s u b j e c t t o r a n k ( Z ) K

where Frobenius norm is a matrix version of sums of squared. This gives the interpretation of dimension reduction. Solution to the problem is: Z = i = 1 K U k d k V K T

We do lose some information when doing dimension reduction, but the majority of variance is explained in the lower-rank matrix (The eigenvalues give us information about how significant the eigenvector is. So we put the eigenvalues in the order of the magnitude of the eigenvectors, and discard the smallest several since the contribution of components along that particular eigenvector is less significant comparing that with a large eigenvalue). PCA guarantees the best rank-K approximation to X. The tuning parameter K can be either chosen by cross-validation or AIC/BIC. This property is useful for data visualization when the data is high dimensional.

Matrix factorization

minimize U , D , V { 1 2 X - U D V T F 2 } s u b j e c t t o U T U = I , V T V = I , D d i a g +

This gives the interpretation of pattern recognition. The first column of U gives the first major pattern in sample (row) space while the first column of V gives the first major pattern in feature space. This property is also useful in recommender systems (a lot of the popular algorithms in collaborative filtering like SVD++, bias-SVD etc. are based upon this “projection-to-find-major-pattern” idea).

Covariance

max V K T X T X V K s u b j e c t t o V K T V K = 1 , V K T V j = 0

X T X here behaves like covariates for multivariate Gaussian. This is essentially an eigenvalue problem of covariance: X T X   =   V D 2 V T and X X T   =   U D 2 U T . Interpretation here is that we are maximizing the covariates in column and row space.

_PCA (Figure Credit: https://onlinecourses.science.psu.edu/stat857/node/35)

The intuition behind pca

The intuition behind PCA is as follows: The First PC (Principal Component) finds the linear combinations of variables that correspond to the direction with maximal sample variance (the major pattern of the dataset, the most spread out direction). Succeeding PCs then goes on to find direction that gives highest variance under the constraint of it being orthogonal (uncorrelated) to preceding ones. Geometrically, what we are doing is basically a coordinate transformation – the newly formed axes correspond to the newly constructed linear combination of variables. The number of the newly formed coordinate axes (variables) is usually much lower than the number of axes (variables) in the original dataset, but it’s still explaining most of the variance present in the data.

Another interesting insight

Another interesting insight on PCA is provided by considering its relationship to Ridge Regression (L2 penalty). The result given by Ridge Regression can be written like this:

Y ^ = X β ^ r = j = 1 p u j d j 2 d j 2 + λ u j T y

The term in the middle here, d j 2 d j 2 + λ , shrinks the singular values. For those major patterns with large singular values, lambda has little effect for shrinking; but for those with small singular values, lambda has huge effect to shrink them towards zero (not exactly zero, unlike lasso - L1 penalty, which does feature selection). This non-uniform shrinkage thus has a grouping effect. This is why Ridge Regression is often used when features are strongly correlated (it only captures orthogonal major pattern). PCA is really easy to implement - feed the data matrix(n*p) to the SVD command in Matlab, extract the PC loading(V) and PC score(U) vector and we will get the major pattern we want.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elec 301 projects fall 2013. OpenStax CNX. Sep 14, 2014 Download for free at http://legacy.cnx.org/content/col11709/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elec 301 projects fall 2013' conversation and receive update notifications?

Ask