<< Chapter < Page Chapter >> Page >

Sketching the graph of an exponential function of the form f ( x ) = b x

Sketch a graph of f ( x ) = 0.25 x . State the domain, range, and asymptote.

Before graphing, identify the behavior and create a table of points for the graph.

  • Since b = 0.25 is between zero and one, we know the function is decreasing. The left tail of the graph will increase without bound, and the right tail will approach the asymptote y = 0.
  • Create a table of points as in [link] .
    x 3 2 1 0 1 2 3
    f ( x ) = 0.25 x 64 16 4 1 0.25 0.0625 0.015625
  • Plot the y -intercept, ( 0 , 1 ) , along with two other points. We can use ( 1 , 4 ) and ( 1 , 0.25 ) .

Draw a smooth curve connecting the points as in [link] .

Graph of the decaying exponential function f(x) = 0.25^x with labeled points at (-1, 4), (0, 1), and (1, 0.25).

The domain is ( , ) ; the range is ( 0 , ) ; the horizontal asymptote is y = 0.

Sketch the graph of f ( x ) = 4 x . State the domain, range, and asymptote.

The domain is ( , ) ; the range is ( 0 , ) ; the horizontal asymptote is y = 0.

Graph of the increasing exponential function f(x) = 4^x with labeled points at (-1, 0.25), (0, 1), and (1, 4).

Graphing transformations of exponential functions

Transformations of exponential graphs behave similarly to those of other functions. Just as with other parent functions, we can apply the four types of transformations—shifts, reflections, stretches, and compressions—to the parent function f ( x ) = b x without loss of shape. For instance, just as the quadratic function maintains its parabolic shape when shifted, reflected, stretched, or compressed, the exponential function also maintains its general shape regardless of the transformations applied.

Graphing a vertical shift

The first transformation occurs when we add a constant d to the parent function f ( x ) = b x , giving us a vertical shift     d units in the same direction as the sign. For example, if we begin by graphing a parent function, f ( x ) = 2 x , we can then graph two vertical shifts alongside it, using d = 3 : the upward shift, g ( x ) = 2 x + 3 and the downward shift, h ( x ) = 2 x 3. Both vertical shifts are shown in [link] .

Graph of three functions, g(x) = 2^x+3 in blue with an asymptote at y=3, f(x) = 2^x in orange with an asymptote at y=0, and h(x)=2^x-3 with an asymptote at y=-3. Note that each functions’ transformations are described in the text.

Observe the results of shifting f ( x ) = 2 x vertically:

  • The domain, ( , ) remains unchanged.
  • When the function is shifted up 3 units to g ( x ) = 2 x + 3 :
    • The y- intercept shifts up 3 units to ( 0 , 4 ) .
    • The asymptote shifts up 3 units to y = 3.
    • The range becomes ( 3 , ) .
  • When the function is shifted down 3 units to h ( x ) = 2 x 3 :
    • The y- intercept shifts down 3 units to ( 0 , 2 ) .
    • The asymptote also shifts down 3 units to y = 3.
    • The range becomes ( 3 , ) .

Graphing a horizontal shift

The next transformation occurs when we add a constant c to the input of the parent function f ( x ) = b x , giving us a horizontal shift     c units in the opposite direction of the sign. For example, if we begin by graphing the parent function f ( x ) = 2 x , we can then graph two horizontal shifts alongside it, using c = 3 : the shift left, g ( x ) = 2 x + 3 , and the shift right, h ( x ) = 2 x 3 . Both horizontal shifts are shown in [link] .

Graph of three functions, g(x) = 2^(x+3) in blue, f(x) = 2^x in orange, and h(x)=2^(x-3). Each functions’ asymptotes are at y=0Note that each functions’ transformations are described in the text.

Observe the results of shifting f ( x ) = 2 x horizontally:

  • The domain, ( , ) , remains unchanged.
  • The asymptote, y = 0 , remains unchanged.
  • The y- intercept shifts such that:
    • When the function is shifted left 3 units to g ( x ) = 2 x + 3 , the y -intercept becomes ( 0 , 8 ) . This is because 2 x + 3 = ( 8 ) 2 x , so the initial value of the function is 8.
    • When the function is shifted right 3 units to h ( x ) = 2 x 3 , the y -intercept becomes ( 0 , 1 8 ) . Again, see that 2 x 3 = ( 1 8 ) 2 x , so the initial value of the function is 1 8 .

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Essential precalculus, part 1. OpenStax CNX. Aug 26, 2015 Download for free at http://legacy.cnx.org/content/col11871/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Essential precalculus, part 1' conversation and receive update notifications?

Ask