<< Chapter < Page Chapter >> Page >
This module discusses how to solve quadratic equations by factoring.

When we multiply, we put things together: when we factor, we pull things apart. Factoring is a critical skill in simplifying functions and solving equations.

There are four basic types of factoring. In each case, I will start by showing a multiplication problem—then I will show how to use factoring to reverse the results of that multiplication.

“pulling out” common factors

This type of factoring is based on the distributive property , which (as you know) tells us that:

2x 4x 2 7x + 3 = 8x 3 14 x 2 + 6x size 12{2x left (4x rSup { size 8{2} } - 7x+3 right )=8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x} {}

When we factor, we do that in reverse. So we would start with an expression such as 8x 3 14 x 2 + 6x size 12{8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x} {} and say “Hey, every one of those terms is divisible by 2. Also, every one of those terms is divisible by x size 12{x} {} . So we “factor out,” or “pull out,” a 2x size 12{2x} {} .

8x 3 14 x 2 + 6x = 2x __ __ + __ size 12{8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x=2x left ("__" - "__"+"__" right )} {}

For each term, we see what happens when we divide that term by 2x size 12{2x} {} . For instance, if we divide 8x 3 size 12{8x rSup { size 8{3} } } {} by 2x size 12{2x} {} the answer is 4x 2 size 12{4x rSup { size 8{2} } } {} . Doing this process for each term, we end up with:

8x 3 14 x 2 + 6x = 2x 4x 2 7x + 3 size 12{8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x=2x left (4x rSup { size 8{2} } - 7x+3 right )} {}

As you can see, this is just what we started with, but in reverse. However, for many types of problems, this factored form is easier to work with.

As another example, consider 6x + 3 size 12{6x+3} {} . The common factor in this case is 3. When we factor a 3 out of the 6x size 12{6x} {} , we are left with 2x size 12{2x} {} . When we factor a 3 out of the 3, we are left with...what? Nothing? No, we are left with 1, since we are dividing by 3.

6x + 3 = 3 2x + 1 size 12{6x+3=3 left (2x+1 right )} {}

There are two key points to take away about this kind of factoring.

  1. This is the simplest kind of factoring. Whenever you are trying to factor a complicated expression, always begin by looking for common factors that you can pull out.
  2. A common factor must be common to all the terms. For instance, 8x 3 14 x 2 + 6x + 7 size 12{8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x+7} {} has no common factor, since the last term is not divisible by either 2 or x size 12{x} {} .

Factoring perfect squares

The second type of factoring is based on the “squaring” formulae that we started with:

x + a 2 = x 2 + 2 ax + a 2 size 12{ left (x+a right ) rSup { size 8{2} } =x rSup { size 8{2} } +2 ital "ax"+a rSup { size 8{2} } } {}
x a 2 = x 2 2 ax + a 2 size 12{ left (x - a right ) rSup { size 8{2} } =x rSup { size 8{2} } - 2 ital "ax"+a rSup { size 8{2} } } {}

For instance, if we see x 2 + 6x + 9 size 12{x rSup { size 8{2} } +6x+9} {} , we may recognize the signature of the first formula: the middle term is three doubled , and the last term is three squared . So this is x + 3 2 size 12{ left (x+3 right ) rSup { size 8{2} } } {} . Once you get used to looking for this pattern, it is easy to spot.

x 2 + 10 x + 25 = x + 5 2 size 12{x rSup { size 8{2} } +"10"x+"25"= left (x+5 right ) rSup { size 8{2} } } {}
x 2 + 2x + 1 = x + 1 2 size 12{x rSup { size 8{2} } +2x+1= left (x+1 right ) rSup { size 8{2} } } {}

And so on. If the middle term is negative , then we have the second formula:

x 2 8x + 16 = x 4 2 size 12{x rSup { size 8{2} } - 8x+"16"= left (x - 4 right ) rSup { size 8{2} } } {}
x 2 14 x + 49 = x 7 2 size 12{x rSup { size 8{2} } - "14"x+"49"= left (x - 7 right ) rSup { size 8{2} } } {}

This type of factoring only works if you have exactly this case : the middle number is something doubled , and the last number is that same something squared . Furthermore, although the middle term can be either positive or negative (as we have seen), the last term cannot be negative.

All this may make it seem like such a special case that it is not even worth bothering about. But as you will see with “completing the square” later in this unit, this method is very general, because even if an expression does not look like a perfect square, you can usually make it look like one if you want to—and if you know how to spot the pattern.

The difference between two squares

The third type of factoring is based on the third of our basic formulae:

Questions & Answers

write 150 organic compounds and name it and draw the structure
Joseph Reply
write 200 organic compounds and name it and draw the structure
Joseph
name 150 organic compounds and draw the structure
Joseph
organic chemistry is a science or social science discuss it's important to our country development
Musa Reply
what is chemistry
Terhemba Reply
what is the difference between ph and poh?
Abagaro Reply
chemical bond that results from the attractive force between shared electrons and nonmetals nucleus is what?
Abagaro
what is chemistry
Ayok
what is chemistry
ISIYAKA Reply
what is oxidation
Chidiebube Reply
calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
first twenty element with their valence
Victoria
what is chemistry
asue Reply
what is atom
asue
what is atom
Victoria
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
what channel
Victoria Reply
what is chemistry
Victoria
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Advanced algebra ii: conceptual explanations. OpenStax CNX. May 04, 2010 Download for free at http://cnx.org/content/col10624/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Advanced algebra ii: conceptual explanations' conversation and receive update notifications?

Ask