<< Chapter < Page Chapter >> Page >
Definition of the complex Fourier series.

In an earlier module , we showed that a square wave could be expressed as a superposition of pulses. As useful asthis decomposition was in this example, it does not generalize well to other periodic signals:How can a superposition of pulses equal a smooth signal like a sinusoid?Because of the importance of sinusoids to linear systems, you might wonder whether they could be added together to represent alarge number of periodic signals. You would be right and in good company as well. Euler and Gauss in particular worried about this problem, and Jean Baptiste Fourier got the credit even though tough mathematical issues were notsettled until later. They worked on what is now known as the Fourier series : representing any periodic signal as a superposition of sinusoids.

But the Fourier series goes well beyond being another signal decomposition method.Rather, the Fourier series begins our journey to appreciate how a signal can be described in either the time-domain or the frequency-domain with no compromise. Let s t be a periodic signal with period T . We want to show that periodic signals, even those that haveconstant-valued segments like a square wave, can be expressed as sum of harmonically related sine waves: sinusoids having frequencies that are integer multiples of the fundamental frequency . Because the signal has period T , the fundamental frequency is 1 T . The complex Fourier series expresses the signal as a superposition ofcomplex exponentials having frequencies k T , k 1 0 1 .

s t k c k 2 k t T
with c k 1 2 a k b k . The real and imaginary parts of the Fourier coefficients c k are written in this unusual way for convenience in defining the classic Fourier series.The zeroth coefficient equals the signal's average value and is real- valued for real-valued signals: c 0 a 0 . The family of functions 2 k t T are called basis functions and form the foundation of the Fourier series. No matter what theperiodic signal might be, these functions are always present and form the representation's building blocks. They depend on thesignal period T , and are indexed by k .
Assuming we know the period, knowing the Fourier coefficientsis equivalent to knowing the signal. Thus, it makes no difference if we have a time-domain or a frequency-domain characterization of the signal.

What is the complex Fourier series for a sinusoid?

Because of Euler's relation,

2 f t 1 2 2 f t 1 2 2 f t
Thus, c 1 1 2 , c 1 1 2 , and the other coefficients are zero.

Got questions? Get instant answers now!

To find the Fourier coefficients, we note the orthogonality property

t 0 T 2 k t T 2 l t T T k l 0 k l
Assuming for the moment that the complex Fourier series "works," we can find a signal's complex Fourier coefficients, its spectrum , by exploiting the orthogonality properties of harmonically related complexexponentials. Simply multiply each side of [link] by 2 l t and integrate over the interval 0 T .
c k 1 T t 0 T s t 2 k t T c 0 1 T t 0 T s t

Finding the Fourier series coefficients for the square wave sq T t is very simple. Mathematically, this signal can be expressed as sq T t 1 0 t T 2 1 T 2 t T The expression for the Fourier coefficients has the form

c k 1 T t 0 T 2 2 k t T 1 T t T 2 T 2 k t T
When integrating an expression containing , treat it just like any other constant.
The two integrals are very similar, one equaling the negative of theother. The final expression becomes
c k 2 2 k 1 k 1 2 k k odd 0 k even
sq t k k -3 -1 1 3 2 k 2 k t T
Consequently, the square wave equals a sum of complex exponentials, but only those having frequencies equal to odd multiples of thefundamental frequency 1 T . The coefficients decay slowly as the frequency index k increases. This index corresponds to the k -th harmonic of the signal's period.

Got questions? Get instant answers now!

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask