<< Chapter < Page Chapter >> Page >
The figure shows some astronauts floating inside the International Space Station
Astronauts experiencing weightlessness on board the International Space Station. (credit: NASA)

Microgravity refers to an environment in which the apparent net acceleration of a body is small compared with that produced by Earth at its surface. Many interesting biology and physics topics have been studied over the past three decades in the presence of microgravity. Of immediate concern is the effect on astronauts of extended times in outer space, such as at the International Space Station. Researchers have observed that muscles will atrophy (waste away) in this environment. There is also a corresponding loss of bone mass. Study continues on cardiovascular adaptation to space flight. On Earth, blood pressure is usually higher in the feet than in the head, because the higher column of blood exerts a downward force on it, due to gravity. When standing, 70% of your blood is below the level of the heart, while in a horizontal position, just the opposite occurs. What difference does the absence of this pressure differential have upon the heart?

Some findings in human physiology in space can be clinically important to the management of diseases back on Earth. On a somewhat negative note, spaceflight is known to affect the human immune system, possibly making the crew members more vulnerable to infectious diseases. Experiments flown in space also have shown that some bacteria grow faster in microgravity than they do on Earth. However, on a positive note, studies indicate that microbial antibiotic production can increase by a factor of two in space-grown cultures. One hopes to be able to understand these mechanisms so that similar successes can be achieved on the ground. In another area of physics space research, inorganic crystals and protein crystals have been grown in outer space that have much higher quality than any grown on Earth, so crystallography studies on their structure can yield much better results.

Plants have evolved with the stimulus of gravity and with gravity sensors. Roots grow downward and shoots grow upward. Plants might be able to provide a life support system for long duration space missions by regenerating the atmosphere, purifying water, and producing food. Some studies have indicated that plant growth and development are not affected by gravity, but there is still uncertainty about structural changes in plants grown in a microgravity environment.

Section summary

  • Newton’s universal law of gravitation: Every particle in the universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. In equation form, this is
    F = G mM r 2 , size 12{F=G { { ital "mM"} over {r rSup { size 8{2} } } } } {}

    where F is the magnitude of the gravitational force. G size 12{G} {} is the gravitational constant, given by G = 6 . 673 × 10 –11 N m 2 /kg 2 size 12{G=6 "." "673" times "10" rSup { size 8{"-11"} } `N cdot m rSup { size 8{2} } "/kg" rSup { size 8{2} } } {} .

  • Newton’s law of gravitation applies universally.

Conceptual questions

Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the ultimate determinant of the truth in physics, and why was this action ultimately accepted?

Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward Earth. Tom says a satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m /s 2 size 12{9 "." "80"`"m/s" rSup { size 8{2} } } {} . Who do you agree with and why?

Newton’s laws of motion and gravity were among the first to convincingly demonstrate the underlying simplicity and unity in nature. Many other examples have since been discovered, and we now expect to find such underlying order in complex situations. Is there proof that such order will always be found in new explorations?

Problem exercises

(a) Calculate Earth’s mass given the acceleration due to gravity at the North Pole is 9.830 m /s 2 size 12{9 "." "830"`"m/s" rSup { size 8{2} } } {} and the radius of the Earth is 6371 km at that location. Hint: use the expression for acceleration due to gravity, g = G M r 2 , to solve for mass.

(b) Compare this with the accepted value of 5 . 979 × 10 24 kg size 12{5 "." "979" times "10" rSup { size 8{"24"} } `"kg"} {} .

a) 5.979 × 10 24 kg size 12{ {underline {5 cdot "979" times "10" rSup { size 8{"24"} } " kg"}} } {}

b) This is identical to the best value to three significant figures.

(a) What is the acceleration due to gravity on the surface of the Moon?

(b) On the surface of Mars? The mass of Mars is 6.418 × 10 23 kg size 12{6 "." "418" times "10" rSup { size 8{"23"} } `"kg"} {} and its radius is 3 . 38 × 10 6 m size 12{3 "." "38" times "10" rSup { size 8{6} } `m} {} .

a) 1.62 m / s 2 size 12{1 cdot "62"" m"/s rSup { size 8{2} } } {}

b) 3.75 m / s 2 size 12{1 cdot "62"" m"/s rSup { size 8{2} } } {}

(a) Calculate the acceleration due to gravity on the surface of the Sun.

(b) By what factor would your weight increase if you could stand on the Sun? (Never mind that you cannot.)

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.

(a) Calculate the magnitude of the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.100 m away at birth (he is assisting, so he is close to the child).

(b) Calculate the magnitude of the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6 . 29 × 10 11 m size 12{6 "." "29" times "10" rSup { size 8{"11"} } `m} {} away. How does the force of Jupiter on the baby compare to the force of the father on the baby? Other objects in the room and the hospital building also exert similar gravitational forces.

a) 2.80 × 10 –6 N size 12{7 cdot "01" times "10" rSup { size 8{"-7"} } N} {}

b) 1.35 × 10 –6 N size 12{1 cdot "35" times "10" rSup { size 8{"-6"} } N} {} , 0.482 size 12{0 cdot "521"} {}

Unreasonable Result

A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight.

(a) Calculate the mass of the mountain.

(b) Compare the mountain’s mass with that of Earth.

(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent? (Note that accurate gravitational measurements can easily detect the effect of nearby mountains and variations in local geology.)

a) 2.94 × 10 17 kg size 12{2 cdot "94" times "10" rSup { size 8{"17"} } kg} {}

b) 4.92 × 10 –8 size 12{4 cdot "92" times "10" rSup { size 8{"-8"} } } {}

of the Earth’s mass.

c) The mass of the mountain and its fraction of the Earth’s mass are too great.

d) The gravitational force assumed to be exerted by the mountain is too great.

Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask