<< Chapter < Page Chapter >> Page >
This module will look at the relationships between the z-transform and the complex plane. Specifically, the creation of pole/zero plots and some of their useful properties are discussed.

Introduction to poles and zeros of the z-transform

It is quite difficult to qualitatively analyze the Laplace transform and Z-transform , since mappings of their magnitude and phase or real part andimaginary part result in multiple mappings of 2-dimensional surfaces in 3-dimensional space. For this reason, it is verycommon to examine a plot of a transfer function's poles and zeros to try to gain a qualitative idea of what a system does.

Once the Z-transform of a system has been determined, one can use the information contained in function's polynomials tographically represent the function and easily observe many defining characteristics. The Z-transform will have the belowstructure, based on Rational Functions :

X z P z Q z

The two polynomials, P z and Q z , allow us to find the poles and zeros of the Z-Transform.

zeros
The complex frequencies that make the overall gain of the filter transfer function zero.
poles
The complex frequencies that make the overall gain of the filter transfer function infinite.

Below is a simple transfer function with the poles and zeros shown below it. H z z 1 z 1 2 z 3 4

The zeros are: 1

The poles are: 1 2 3 4

Got questions? Get instant answers now!

The z-plane

Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto the Z-Plane. TheZ-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable z . The position on the complex plane is given by r θ and the angle from the positive, real axis around the plane is denoted by θ . When mapping poles and zerosonto the plane, poles are denoted by an "x" and zeros by an "o". The below figure shows theZ-Plane, and examples of plotting zeros and poles onto the plane can be found in the following section.

Z-plane

Examples of pole/zero plots

This section lists several examples of finding the poles and zeros of a transfer function and then plotting them onto theZ-Plane.

Simple pole/zero plot

H z z z 1 2 z 3 4

The zeros are: 0

The poles are: 1 2 3 4

Pole/zero plot

Using the zeros and poles found from the transfer function, the one zero is mapped to zero and the two polesare placed at 1 2 and 3 4
Got questions? Get instant answers now!

Complex pole/zero plot

H z z z z 1 2 1 2 z 1 2 1 2

The zeros are:

The poles are: 1 1 2 1 2 1 2 1 2

Pole/zero plot

Using the zeros and poles found from the transfer function, the zeros are mapped to ± , and the poles are placed at 1 , 1 2 1 2 and 1 2 1 2
Got questions? Get instant answers now!

Pole-zero cancellation

An easy mistake to make with regards to poles and zeros is to think that a function like s 3 s 1 s 1 is the same as s 3 . In theory they are equivalent, as the pole and zero at s 1 cancel each other out in what is known as pole-zero cancellation . However, think about what may happen if this were a transfer function of a system that wascreated with physical circuits. In this case, it is very unlikely that the pole and zero would remain in exactly thesame place. A minor temperature change, for instance, could cause one of them to move just slightly. If this were tooccur a tremendous amount of volatility is created in that area, since there is a change from infinity at the pole tozero at the zero in a very small range of signals. This is generally a very bad way to try to eliminate a pole. A muchbetter way is to use control theory to move the pole to a better place.

Got questions? Get instant answers now!

Repeated poles and zeros

It is possible to have more than one pole or zero at any given point. For instance, the discrete-time transfer function H z z 2 will have two zeros at the origin and the continuous-time function H s 1 s 25 will have 25 poles at the origin.

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily createpole/zero plots. Below is a short program that plots the poles and zeros from the above example onto the Z-Plane.

% Set up vector for zerosz = [j ; -j];% Set up vector for poles p = [-1 ; .5+.5j ; .5-.5j]; figure(1);zplane(z,p); title('Pole/Zero Plot for Complex Pole/Zero Plot Example');

Interactive demonstration of poles and zeros

Pole-ZeroDrillDemo
Interact (when online) with a Mathematica CDF demonstrating Pole/Zero Plots. To Download, right-click and save target as .cdf.

Applications for pole-zero plots

Stability and control theory

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us. Basically whatwe can gather from this is that the magnitude of the transfer function will be larger when it is closer to the poles andsmaller when it is closer to the zeros. This provides us with a qualitative understanding of what the system does at variousfrequencies and is crucial to the discussion of stability .

Pole/zero plots and the region of convergence

The region of convergence (ROC) for X z in the complex Z-plane can be determined from the pole/zero plot.Although several regions of convergence may be possible, where each one corresponds to a different impulse response, thereare some choices that are more practical. A ROC can be chosen to make the transfer function causal and/or stable dependingon the pole/zero plot.

    Filter properties from roc

  • If the ROC extends outward from the outermost pole, then the system is causal .
  • If the ROC includes the unit circle, then the system is stable .
Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot discussed earlier. The shaded region indicates the ROC chosen for the filter. From this figure, wecan see that the filter will be both causal and stable since the above listed conditions are both met.

H z z z 1 2 z 3 4

Region of convergence for the pole/zero plot

The shaded area represents the chosen ROC for the transfer function.
Got questions? Get instant answers now!

Frequency response and pole/zero plots

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easilydesign a filter. Based on the location of the poles and zeros, the magnitude response of the filter can be quicklyunderstood. Also, by starting with the pole/zero plot, one can design a filter and obtain its transfer function veryeasily.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Intro to digital signal processing. OpenStax CNX. Jan 22, 2004 Download for free at http://cnx.org/content/col10203/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intro to digital signal processing' conversation and receive update notifications?

Ask