<< Chapter < Page Chapter >> Page >
This module contains information on solving linear constant coefficient differential equations.

Introduction

The approach to solving linear constant coefficient ordinary differential equations is to find the general form of all possible solutions to the equation and then apply a number of conditions to find the appropriate solution. The two main types of problems are initial value problems, which involve constraints on the solution and its derivatives at a single point, and boundary value problems, which involve constraints on the solution or its derivatives at several points.

The number of initial conditions needed for an N th order differential equation, which is the order of the highest order derivative, is N , and a unique solution is always guaranteed if these are supplied. Boundary value problems can be slightly more complicated and will not necessarily have a unique solution or even a solution at all for a given set of conditions. Thus, this module will focus exclusively on initial value problems.

Solving linear constant coefficient ordinary differential equations

Consider some linear constant coefficient ordinary differential equation given by A x ( t ) = f ( t ) , where A is a differential operator of the form

A = a n d n d t n + a n - 1 d n - 1 d t n - 1 + . . . + a 1 d d t + a 0 .

Let x h ( t ) and x p ( t ) be two functions such that A x h ( t ) = 0 and A x p ( t ) = f ( t ) . By the linearity of A , note that A ( x h ( t ) + x p ( t ) ) = 0 + f ( t ) = f ( t ) . Thus, the form of the general solution x g ( t ) to any linear constant coefficient ordinary differential equation is the sum of a homogeneous solution x h ( t ) to the equation A x = 0 and a particular solution x p ( t ) that is specific to the forcing function f ( t ) .

We wish to determine the forms of the homogeneous and nonhomogeneous solutions in full generality in order to avoid incorrectly restricting the form of the solution before applying any conditions. Otherwise, a valid set of initial or boundary conditions might appear to have no corresponding solution trajectory. The following discussion shows how to accomplish this for linear constant coefficient ordinary differential equations.

Finding the homogeneous solution

In order to find the homogeneous solution to A x ( t ) = f ( t ) , consider the differential equation A x ( t ) = 0 . We know that the solutions have the form c e λ t for some complex constants c , λ . Since A c e λ t = 0 for a solution, it follows that

a n d n d t n + a n - 1 d n - 1 d t n - 1 + . . . + a 1 d d t + a 0 e λ t = 0 ,

so it also follows that

a n λ n + a n - 1 λ n - 1 . . . + a 1 λ + a 0 = 0 .

Therefore, the parameters of the solution exponents are the roots of the above polynomial, called the characteristic polynomial.

For equations of order two or more, there will be several roots. If all of the roots are distinct, then the the general form of the homogeneous solution is simply

x h ( t ) = c 1 e λ 1 t + . . . + c n e λ n t .

If a root has multiplicity that is greater than one, the repeated solutions must be multiplied by each powers of t from 0 to one less than the root multiplicity (in order to ensure linearly independent solutions). For instance, if λ 1 had multiplicity 2 and λ 2 had multiplicity 3, the homogeneous solution would be

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask