<< Chapter < Page Chapter >> Page >
  • Approximate the value of a definite integral by using the midpoint and trapezoidal rules.
  • Determine the absolute and relative error in using a numerical integration technique.
  • Estimate the absolute and relative error using an error-bound formula.
  • Recognize when the midpoint and trapezoidal rules over- or underestimate the true value of an integral.
  • Use Simpson’s rule to approximate the value of a definite integral to a given accuracy.

The antiderivatives of many functions either cannot be expressed or cannot be expressed easily in closed form (that is, in terms of known functions). Consequently, rather than evaluate definite integrals of these functions directly, we resort to various techniques of numerical integration    to approximate their values. In this section we explore several of these techniques. In addition, we examine the process of estimating the error in using these techniques.

The midpoint rule

Earlier in this text we defined the definite integral of a function over an interval as the limit of Riemann sums . In general, any Riemann sum of a function f ( x ) over an interval [ a , b ] may be viewed as an estimate of a b f ( x ) d x . Recall that a Riemann sum of a function f ( x ) over an interval [ a , b ] is obtained by selecting a partition

P = { x 0 , x 1 , x 2 ,… , x n } , where a = x 0 < x 1 < x 2 < < x n = b

and a set

S = { x 1 * , x 2 * ,… , x n * } , where x i 1 x i * x i for all i .

The Riemann sum corresponding to the partition P and the set S is given by i = 1 n f ( x i * ) Δ x i , where Δ x i = x i x i 1 , the length of the i th subinterval.

The midpoint rule    for estimating a definite integral uses a Riemann sum with subintervals of equal width and the midpoints, m i , of each subinterval in place of x i * . Formally, we state a theorem regarding the convergence of the midpoint rule as follows.

The midpoint rule

Assume that f ( x ) is continuous on [ a , b ] . Let n be a positive integer and Δ x = b a n . If [ a , b ] is divided into n subintervals, each of length Δ x , and m i is the midpoint of the i th subinterval, set

M n = i = 1 n f ( m i ) Δ x .

Then lim n M n = a b f ( x ) d x .

As we can see in [link] , if f ( x ) 0 over [ a , b ] , then i = 1 n f ( m i ) Δ x corresponds to the sum of the areas of rectangles approximating the area between the graph of f ( x ) and the x -axis over [ a , b ] . The graph shows the rectangles corresponding to M 4 for a nonnegative function over a closed interval [ a , b ] .

This figure is a graph of a non-negative function in the first quadrant. The function increases and decreases. The quadrant is divided into a grid. Beginning on the x-axis at the point labeled a = x sub 0, there are rectangles shaded whose heights are approximately the height of the curve. The x-axis is scaled by increments of msub1, x sub 1, m sub 2, x sub 2, m sub 3, x sub 3, m sub 4 and b = x sub 4.
The midpoint rule approximates the area between the graph of f ( x ) and the x -axis by summing the areas of rectangles with midpoints that are points on f ( x ) .

Using the midpoint rule with M 4

Use the midpoint rule to estimate 0 1 x 2 d x using four subintervals. Compare the result with the actual value of this integral.

Each subinterval has length Δ x = 1 0 4 = 1 4 . Therefore, the subintervals consist of

[ 0 , 1 4 ] , [ 1 4 , 1 2 ] , [ 1 2 , 3 4 ] , and [ 3 4 , 1 ] .

The midpoints of these subintervals are { 1 8 , 3 8 , 5 8 , 7 8 } . Thus,

M 4 = 1 4 f ( 1 8 ) + 1 4 f ( 3 8 ) + 1 4 f ( 5 8 ) + 1 4 f ( 7 8 ) = 1 4 · 1 64 + 1 4 · 9 64 + 1 4 · 25 64 + 1 4 · 21 64 = 21 64 .

Since

0 1 x 2 d x = 1 3 and | 1 3 21 64 | = 1 192 0.0052 ,

we see that the midpoint rule produces an estimate that is somewhat close to the actual value of the definite integral.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using the midpoint rule with M 6

Use M 6 to estimate the length of the curve y = 1 2 x 2 on [ 1 , 4 ] .

The length of y = 1 2 x 2 on [ 1 , 4 ] is

1 4 1 + ( d y d x ) 2 d x .

Since d y d x = x , this integral becomes 1 4 1 + x 2 d x .

If [ 1 , 4 ] is divided into six subintervals, then each subinterval has length Δ x = 4 1 6 = 1 2 and the midpoints of the subintervals are { 5 4 , 7 4 , 9 4 , 11 4 , 13 4 , 15 4 } . If we set f ( x ) = 1 + x 2 ,

M 6 = 1 2 f ( 5 4 ) + 1 2 f ( 7 4 ) + 1 2 f ( 9 4 ) + 1 2 f ( 11 4 ) + 1 2 f ( 13 4 ) + 1 2 f ( 15 4 ) 1 2 ( 1.6008 + 2.0156 + 2.4622 + 2.9262 + 3.4004 + 3.8810 ) = 8.1431.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?

Ask