<< Chapter < Page Chapter >> Page >

A cleaner pushes a 4.50-kg laundry cart in such a way that the net external force on it is 60.0 N. Calculate the magnitude of its acceleration.

13.3 m/s 2

Since astronauts in orbit are apparently weightless, a clever method of measuring their masses is needed to monitor their mass gains or losses to adjust diets. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted and the astronaut’s acceleration is measured to be 0 . 893 m/s 2 size 12{0 "." "893 m/s" rSup { size 8{2} } } {} . (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which they orbit experiences an equal and opposite force. Discuss how this would affect the measurement of the astronaut’s acceleration. Propose a method in which recoil of the vehicle is avoided.

In [link] , the net external force on the 24-kg mower is stated to be 51 N. If the force of friction opposing the motion is 24 N, what force F size 12{F} {} (in newtons) is the person exerting on the mower? Suppose the mower is moving at 1.5 m/s when the force F size 12{F} {} is removed. How far will the mower go before stopping?

The same rocket sled drawn in [link] is decelerated at a rate of 1 96 m/s 2 size 12{1"96 m/s" rSup { size 8{2} } } {} . What force is necessary to produce this deceleration? Assume that the rockets are off. The mass of the system is 2100 kg.

A sled is shown with four rockets. Friction force is represented by an arrow labeled as vector f pointing toward the left on the sled. Weight of the sled is represented by an arrow labeled as vector W, shown pointing downward, and normal force is represented by an arrow labeled as vector N having the same length as W acting upward on the sled.

(a) If the rocket sled shown in [link] starts with only one rocket burning, what is the magnitude of its acceleration? Assume that the mass of the system is 2100 kg, the thrust T is 2.4 × 10 4 N, and the force of friction opposing the motion is known to be 650 N. (b) Why is the acceleration not one-fourth of what it is with all rockets burning?

(a) 12 m/s 2 .

(b) The acceleration is not one-fourth of what it was with all rockets burning because the frictional force is still as large as it was with all rockets burning.

A sled is shown with thrust represented by a vector T pushing the sled toward the right. Friction force is represented by an arrow labeled as vector f pointing toward the left on the sled. The weight of the sled is represented by an arrow labeled as vector W, shown pointing downward, and the normal force is represented by an arrow labeled as vector N having the same length as W acting upward on the sled.

What is the deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h? (Such deceleration caused one test subject to black out and have temporary blindness.)

Suppose two children push horizontally, but in exactly opposite directions, on a third child in a wagon. The first child exerts a force of 75.0 N, the second a force of 90.0 N, friction is 12.0 N, and the mass of the third child plus wagon is 23.0 kg. (a) What is the system of interest if the acceleration of the child in the wagon is to be calculated? (b) Draw a free-body diagram, including all forces acting on the system. (c) Calculate the acceleration. (d) What would the acceleration be if friction were 15.0 N?

(a) The system is the child in the wagon plus the wagon.

(b

An object represented as a dot labeled m is shown at the center. One force represented by an arrow labeled as vector F sub 2 acts toward the right. Another force represented by an arrow labeled as vector F sub 1 having a slightly shorter length in comparison with F sub 2 acts on the object pointing left. A friction force represented by an arrow labeled as vector f having a small length acts on the object toward the left. Weight, represented by an arrow labeled as vector W, acts on the object downward, and normal force, represented by an arrow labeled as vector N, acts upward, having the same length as W.

(c) a = 0 . 130 m/s 2 size 12{a=0 "." "130"" m/s" rSup { size 8{2} } } {} in the direction of the second child’s push.

(d) a = 0.00 m/s 2 size 12{a=0" m/s" rSup { size 8{2} } } {}

A powerful motorcycle can produce an acceleration of 3.50 m/s 2 size 12{3 "." "50"" m/s" rSup { size 8{2} } } {} while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What is the magnitude of the force the motorcycle exerts backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg?

The rocket sled shown in [link] accelerates at a rate of 49.0 m/s 2 size 12{"49" "." 0" m/s" rSup { size 8{2} } } {} . Its passenger has a mass of 75.0 kg. (a) Calculate the horizontal component of the force the seat exerts against his body. Compare this with his weight by using a ratio. (b) Calculate the direction and magnitude of the total force the seat exerts against his body.

(a) 3.68 × 10 3 N . This force is 5.00 times greater than his weight.

(b) 3750 N; 11.3º above horizontal size 12{"3750"" N; 11" "." 3°" above horizontal"} {}

A sled is shown with four rockets. Friction force is represented by an arrow labeled as vector f pointing toward the left on the sled. The weight of the sled is represented by an arrow labeled as vector W, shown pointing downward, and the normal force is represented by an arrow labeled as vector N having the same length as W acting upward on the sled.

Repeat the previous problem for the situation in which the rocket sled decelerates at a rate of 2 01 m/s 2 size 12{2"01 m/s" rSup { size 8{2} } } {} . In this problem, the forces are exerted by the seat and restraining belts.

The weight of an astronaut plus his space suit on the Moon is only 250 N. How much do they weigh on Earth? What is the mass on the Moon? On Earth?

1.5 × 10 3 N , 150 kg , 150 kg

Suppose the mass of a fully loaded module in which astronauts take off from the Moon is 10,000 kg. The thrust of its engines is 30,000 N. (a) Calculate its the magnitude of acceleration in a vertical takeoff from the Moon. (b) Could it lift off from Earth? If not, why not? If it could, calculate the magnitude of its acceleration.

Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Abe advanced level physics. OpenStax CNX. Jul 11, 2013 Download for free at http://legacy.cnx.org/content/col11534/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Abe advanced level physics' conversation and receive update notifications?

Ask