<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Use double-angle formulas to find exact values.
  • Use double-angle formulas to verify identities.
  • Use reduction formulas to simplify an expression.
  • Use half-angle formulas to find exact values.
Picture of two bicycle ramps, one with a steep slope and one with a gentle slope.
Bicycle ramps for advanced riders have a steeper incline than those designed for novices.

Bicycle ramps made for competition (see [link] ) must vary in height depending on the skill level of the competitors. For advanced competitors, the angle formed by the ramp and the ground should be θ such that tan θ = 5 3 . The angle is divided in half for novices. What is the steepness of the ramp for novices? In this section, we will investigate three additional categories of identities that we can use to answer questions such as this one.

Using double-angle formulas to find exact values

In the previous section, we used addition and subtraction formulas for trigonometric functions. Now, we take another look at those same formulas. The double-angle formulas    are a special case of the sum formulas, where α = β . Deriving the double-angle formula for sine begins with the sum formula,

sin ( α + β ) = sin α cos β + cos α sin β

If we let α = β = θ , then we have

sin ( θ + θ ) = sin θ cos θ + cos θ sin θ      sin ( 2 θ ) = 2 sin θ cos θ

Deriving the double-angle for cosine gives us three options. First, starting from the sum formula, cos ( α + β ) = cos α cos β sin α sin β , and letting α = β = θ , we have

cos ( θ + θ ) = cos θ cos θ sin θ sin θ      cos ( 2 θ ) = cos 2 θ sin 2 θ

Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more interpretations. The first one is:

cos ( 2 θ ) = cos 2 θ sin 2 θ              = ( 1 sin 2 θ ) sin 2 θ              = 1 2 sin 2 θ

The second interpretation is:

cos ( 2 θ ) = cos 2 θ sin 2 θ              = cos 2 θ ( 1 cos 2 θ )              = 2 cos 2 θ 1

Similarly, to derive the double-angle formula for tangent, replacing α = β = θ in the sum formula gives

tan ( α + β ) = tan α + tan β 1 tan α tan β tan ( θ + θ ) = tan θ + tan θ 1 tan θ tan θ tan ( 2 θ ) = 2 tan θ 1 tan 2 θ

Double-angle formulas

The double-angle formulas    are summarized as follows:

sin ( 2 θ ) = 2 sin θ cos θ

cos ( 2 θ ) = cos 2 θ sin 2 θ              = 1 2 sin 2 θ              = 2 cos 2 θ 1

tan ( 2 θ ) = 2 tan θ 1 tan 2 θ

Given the tangent of an angle and the quadrant in which it is located, use the double-angle formulas to find the exact value.

  1. Draw a triangle to reflect the given information.
  2. Determine the correct double-angle formula.
  3. Substitute values into the formula based on the triangle.
  4. Simplify.

Using a double-angle formula to find the exact value involving tangent

Given that tan θ = 3 4 and θ is in quadrant II, find the following:

  1. sin ( 2 θ )
  2. cos ( 2 θ )
  3. tan ( 2 θ )

If we draw a triangle to reflect the information given, we can find the values needed to solve the problems on the image. We are given tan θ = 3 4 , such that θ is in quadrant II. The tangent of an angle is equal to the opposite side over the adjacent side, and because θ is in the second quadrant, the adjacent side is on the x -axis and is negative. Use the Pythagorean Theorem to find the length of the hypotenuse:

(−4 ) 2 + ( 3 ) 2 = c 2 16 + 9 = c 2 25 = c 2 c = 5  

Now we can draw a triangle similar to the one shown in [link] .

Diagram of a triangle in the x,y-plane. The vertices are at the origin, (-4,0), and (-4,3). The angle at the origin is theta. The angle formed by the side (-4,3) to (-4,0) forms a right angle with the x axis. The hypotenuse across from the right angle is length 5.
  1. Let’s begin by writing the double-angle formula for sine.
    sin ( 2 θ ) = 2 sin θ cos θ

    We see that we to need to find sin θ and cos θ . Based on [link] , we see that the hypotenuse equals 5, so sin θ = 3 5 , and cos θ = 4 5 . Substitute these values into the equation, and simplify.

    Thus,

    sin ( 2 θ ) = 2 ( 3 5 ) ( 4 5 )              = 24 25
  2. Write the double-angle formula for cosine.
    cos ( 2 θ ) = cos 2 θ sin 2 θ

    Again, substitute the values of the sine and cosine into the equation, and simplify.

    cos ( 2 θ ) = ( 4 5 ) 2 ( 3 5 ) 2              = 16 25 9 25              = 7 25
  3. Write the double-angle formula for tangent.
    tan ( 2 θ ) = 2 tan θ 1 tan 2 θ

    In this formula, we need the tangent, which we were given as tan θ = 3 4 . Substitute this value into the equation, and simplify.

    tan ( 2 θ ) = 2 ( 3 4 ) 1 ( 3 4 ) 2             = 3 2 1 9 16             = 3 2 ( 16 7 )             = 24 7

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Essential precalculus, part 2. OpenStax CNX. Aug 20, 2015 Download for free at http://legacy.cnx.org/content/col11845/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Essential precalculus, part 2' conversation and receive update notifications?

Ask