<< Chapter < Page Chapter >> Page >

The electron transport chain ( [link] a ) is the last component of aerobic respiration and is the only part of metabolism that uses atmospheric oxygen. Oxygen continuously diffuses into plants for this purpose. In animals, oxygen enters the body through the respiratory system. Electron transport is a series of chemical reactions that resembles a bucket brigade in that electrons are passed rapidly from one component to the next, to the endpoint of the chain where oxygen is the final electron acceptor and water is produced. There are four complexes composed of proteins, labeled I through IV in [link] c , and the aggregation of these four complexes, together with associated mobile, accessory electron carriers, is called the electron transport chain    . The electron transport chain is present in multiple copies in the inner mitochondrial membrane of eukaryotes and in the plasma membrane of prokaryotes. In each transfer of an electron through the electron transport chain, the electron loses energy, but with some transfers, the energy is stored as potential energy by using it to pump hydrogen ions across the inner mitochondrial membrane into the intermembrane space, creating an electrochemical gradient.

Art connection

Part a: This illustration shows the electron transport chain embedded in the inner mitochondrial membrane. The electron transport chain consists of four electron complexes. Complex I oxidizes NADH to NAD+ and simultaneously pumps a proton across the membrane into the intermembrane space. The two electrons released from NADH are shuttled to coenzyme Q, then to complex III, to cytochrome c, to complex IV, then to molecular oxygen. In the process, two more protons are pumped across the membrane into the intermembrane space, and molecular oxygen is reduced to form water. Complex II removes two electrons from FADH2, thereby forming FAD. The electrons are shuttled to coenzyme Q, then to complex III, cytochrome c, complex I, and molecular oxygen as in the case of NADH oxidation. Part b: This illustration shows an ATP synthase enzyme embedded in the inner mitochondrial membrane. ATP synthase allows protons to move from an area of high concentration in the intermembrane space to an area of low concentration in the mitochondrial matrix. The energy derived from this exergonic process is used to synthesize ATP from ADP and inorganic phosphate. Part c: This illustration shows the electron transport chain and ATP synthase enzyme embedded in the inner mitochondrial membrane, and the citric acid cycle in the mitochondrial matrix. The citric acid cycle feeds NADH and FADH2 into the electron transport chain. The electron transport chain oxidizes these substrates and, in the process, pumps protons into the intermembrane space. ATP synthase allows protons to leak back into the matrix and synthesizes ATP.
(a) The electron transport chain is a set of molecules that supports a series of oxidation-reduction reactions. (b) ATP synthase is a complex, molecular machine that uses an H + gradient to regenerate ATP from ADP. (c) Chemiosmosis relies on the potential energy provided by the H + gradient across the membrane.

Cyanide inhibits cytochrome c oxidase, a component of the electron transport chain. If cyanide poisoning occurs, would you expect the pH of the intermembrane space to increase or decrease? What affect would cyanide have on ATP synthesis?

Electrons from NADH and FADH 2 are passed to protein complexes in the electron transport chain. As they are passed from one complex to another (there are a total of four), the electrons lose energy, and some of that energy is used to pump hydrogen ions from the mitochondrial matrix into the intermembrane space. In the fourth protein complex, the electrons are accepted by oxygen, the terminal acceptor. The oxygen with its extra electrons then combines with two hydrogen ions, further enhancing the electrochemical gradient, to form water. If there were no oxygen present in the mitochondrion, the electrons could not be removed from the system, and the entire electron transport chain would back up and stop. The mitochondria would be unable to generate new ATP in this way, and the cell would ultimately die from lack of energy. This is the reason we must breathe to draw in new oxygen.

In the electron transport chain, the free energy from the series of reactions just described is used to pump hydrogen ions across the membrane. The uneven distribution of H + ions across the membrane establishes an electrochemical gradient, owing to the H + ions’ positive charge and their higher concentration on one side of the membrane.

Hydrogen ions diffuse through the inner membrane through an integral membrane protein called ATP synthase    ( [link] b ). This complex protein acts as a tiny generator, turned by the force of the hydrogen ions diffusing through it, down their electrochemical gradient from the intermembrane space, where there are many mutually repelling hydrogen ions to the matrix, where there are few. The turning of the parts of this molecular machine regenerate ATP from ADP. This flow of hydrogen ions across the membrane through ATP synthase is called chemiosmosis    .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of biology for the university of georgia. OpenStax CNX. Aug 09, 2013 Download for free at http://legacy.cnx.org/content/col11520/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology for the university of georgia' conversation and receive update notifications?

Ask