<< Chapter < Page Chapter >> Page >
  • Establish the expression for centripetal acceleration.
  • Explain the centrifuge.

We know from kinematics that acceleration is a change in velocity, either in its magnitude or in its direction, or both. In uniform circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the magnitude of the velocity might be constant. You experience this acceleration yourself when you turn a corner in your car. (If you hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion.) What you notice is a sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the more noticeable this acceleration will become. In this section we examine the direction and magnitude of that acceleration.

[link] shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of rotation (the center of the circular path). This pointing is shown with the vector diagram in the figure. We call the acceleration of an object moving in uniform circular motion (resulting from a net external force) the centripetal acceleration    ( a c size 12{a rSub { size 8{c} } } {} ); centripetal means “toward the center” or “center seeking.”

The given figure shows a circle, with a triangle having vertices A B C made from the center to the boundry. A is at the center and B and C points are at the circle path. Lines A B and A C act as radii and B C is a chord. Delta theta is shown inside the triangle, and the arc length delta s and the chord length delta r are also given. At point B, velocity of object is shown as v one and at point C, velocity of object is shown as v two. Along the circle an equation is shown as delta v equals v sub 2 minus v sub 1.
The directions of the velocity of an object at two different points are shown, and the change in velocity Δ v size 12{Δv} {} is seen to point directly toward the center of curvature. (See small inset.) Because a c = Δ v / Δ t {a rSub { {c} } =Δv/Δt} {} , the acceleration is also toward the center; a c size 12{a rSub { size 8{c} } } {} is called centripetal acceleration. (Because Δ θ size 12{Δθ} {} is very small, the arc length Δ s size 12{Δs} {} is equal to the chord length Δ r size 12{Δr} {} for small time differences.)

The direction of centripetal acceleration is toward the center of curvature, but what is its magnitude? Note that the triangle formed by the velocity vectors and the one formed by the radii r size 12{r} {} and Δ s size 12{Δs} {} are similar. Both the triangles ABC and PQR are isosceles triangles (two equal sides). The two equal sides of the velocity vector triangle are the speeds v 1 = v 2 = v size 12{v rSub { size 8{1} } =v rSub { size 8{2} } =v} {} . Using the properties of two similar triangles, we obtain

Δ v v = Δ s r . size 12{ { {Δv} over {v} } = { {Δs} over {r} } "."} {}

Acceleration is Δ v / Δ t size 12{Δv/Δt} {} , and so we first solve this expression for Δ v size 12{Δv} {} :

Δ v = v r Δ s . size 12{Δv= { {v} over {r} } Δs"."} {}

Then we divide this by Δ t size 12{Δt} {} , yielding

Δ v Δ t = v r × Δ s Δ t . size 12{ { {Δv} over {Δt} } = { {v} over {r} } times { {Δs} over {Δt} } "."} {}

Finally, noting that Δ v / Δ t = a c size 12{Δv/Δt=a rSub { size 8{c} } } {} and that Δ s / Δ t = v size 12{Δs/Δt=v} {} , the linear or tangential speed, we see that the magnitude of the centripetal acceleration is

a c = v 2 r , size 12{a rSub { size 8{c} } = { {v rSup { size 8{2} } } over {r} } ","} {}

which is the acceleration of an object in a circle of radius r size 12{r} {} at a speed v size 12{v} {} . So, centripetal acceleration is greater at high speeds and in sharp curves (smaller radius), as you have noticed when driving a car. But it is a bit surprising that a c size 12{a rSub { size 8{c} } } {} is proportional to speed squared, implying, for example, that it is four times as hard to take a curve at 100 km/h than at 50 km/h. A sharp corner has a small radius, so that a c size 12{a rSub { size 8{c} } } {} is greater for tighter turns, as you have probably noticed.

It is also useful to express a c size 12{a rSub { size 8{c} } } {} in terms of angular velocity. Substituting v = size 12{v=rω} {} into the above expression, we find a c = 2 / r = 2 size 12{a rSub { size 8{c} } = left (rω right ) rSup { size 8{2} } /r=rω rSup { size 8{2} } } {} . We can express the magnitude of centripetal acceleration using either of two equations:

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics subject knowledge enhancement course (ske). OpenStax CNX. Jan 09, 2015 Download for free at http://legacy.cnx.org/content/col11505/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics subject knowledge enhancement course (ske)' conversation and receive update notifications?

Ask