<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Use sum and difference formulas for cosine.
  • Use sum and difference formulas for sine.
  • Use sum and difference formulas for tangent.
  • Use sum and difference formulas for cofunctions.
  • Use sum and difference formulas to verify identities.
Photo of Mt. McKinley.
Mount McKinley, in Denali National Park, Alaska, rises 20,237 feet (6,168 m) above sea level. It is the highest peak in North America. (credit: Daniel A. Leifheit, Flickr)

How can the height of a mountain be measured? What about the distance from Earth to the sun? Like many seemingly impossible problems, we rely on mathematical formulas to find the answers. The trigonometric identities, commonly used in mathematical proofs, have had real-world applications for centuries, including their use in calculating long distances.

The trigonometric identities we will examine in this section can be traced to a Persian astronomer who lived around 950 AD, but the ancient Greeks discovered these same formulas much earlier and stated them in terms of chords. These are special equations or postulates, true for all values input to the equations, and with innumerable applications.

In this section, we will learn techniques that will enable us to solve problems such as the ones presented above. The formulas that follow will simplify many trigonometric expressions and equations. Keep in mind that, throughout this section, the term formula is used synonymously with the word identity .

Using the sum and difference formulas for cosine

Finding the exact value of the sine, cosine, or tangent of an angle is often easier if we can rewrite the given angle in terms of two angles that have known trigonometric values. We can use the special angles , which we can review in the unit circle shown in [link] .

Diagram of the unit circle with points labeled on its edge. P point is at an angle a from the positive x axis with coordinates (cosa, sina). Point Q is at an angle of B from the positive x axis with coordinates (cosb, sinb). Angle POQ is a - B degrees. Point A is at an angle of (a-B) from the x axis with coordinates (cos(a-B), sin(a-B)). Point B is just at point (1,0). Angle AOB is also a - B degrees. Radii PO, AO, QO, and BO are all 1 unit long and are the legs of triangles POQ and AOB. Triangle POQ is a rotation of triangle AOB, so the distance from P to Q is the same as the distance from A to B.
The Unit Circle

We will begin with the sum and difference formulas for cosine , so that we can find the cosine of a given angle if we can break it up into the sum or difference of two of the special angles. See [link] .

Sum formula for cosine cos ( α + β ) = cos α cos β sin α sin β
Difference formula for cosine cos ( α β ) = cos α cos β + sin α sin β

First, we will prove the difference formula for cosines. Let’s consider two points on the unit circle. See [link] . Point P is at an angle α from the positive x- axis with coordinates ( cos α , sin α ) and point Q is at an angle of β from the positive x- axis with coordinates ( cos β , sin β ) . Note the measure of angle P O Q is α β .

Label two more points: A at an angle of ( α β ) from the positive x- axis with coordinates ( cos ( α β ) , sin ( α β ) ) ; and point B with coordinates ( 1 , 0 ) . Triangle P O Q is a rotation of triangle A O B and thus the distance from P to Q is the same as the distance from A to B .

Diagram of the unit circle with points labeled on its edge. P point is at an angle a from the positive x axis with coordinates (cosa, sina). Point Q is at an angle of B from the positive x axis with coordinates (cosb, sinb). Angle POQ is a - B degrees. Point A is at an angle of (a-B) from the x axis with coordinates (cos(a-B), sin(a-B)). Point B is just at point (1,0). Angle AOB is also a - B degrees. Radii PO, AO, QO, and BO are all 1 unit long and are the legs of triangles POQ and AOB. Triangle POQ is a rotation of triangle AOB, so the distance from P to Q is the same as the distance from A to B.

We can find the distance from P to Q using the distance formula .

d P Q = ( cos α cos β ) 2 + ( sin α sin β ) 2         = cos 2 α 2 cos α cos β + cos 2 β + sin 2 α 2 sin α sin β + sin 2 β

Then we apply the Pythagorean identity and simplify.

= ( cos 2 α + sin 2 α ) + ( cos 2 β + sin 2 β ) 2 cos α cos β 2 sin α sin β = 1 + 1 2 cos α cos β 2 sin α sin β = 2 2 cos α cos β 2 sin α sin β

Similarly, using the distance formula we can find the distance from A to B .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Essential precalculus, part 2. OpenStax CNX. Aug 20, 2015 Download for free at http://legacy.cnx.org/content/col11845/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Essential precalculus, part 2' conversation and receive update notifications?

Ask