<< Chapter < Page Chapter >> Page >

Now for the fun. Because N 2 L , each of the half-length transforms can be reduced to two quarter-length transforms, each of these to twoeighth-length ones, etc. This decomposition continues until we are left with length-2 transforms. This transform is quitesimple, involving only additions. Thus, the first stage of the FFT has N 2 length-2 transforms (see the bottom part of [link] ). Pairs of these transforms are combined by adding one to the other multiplied by a complexexponential. Each pair requires 4 additions and 2 multiplications, giving a total number of computations equaling 6 · N 4 3 N 2 . This number of computations does not change from stage to stage.Because the number of stages, the number of times the length can be divided by two, equals 2 logbase --> N , the number of arithmetic operations equals 3 N 2 2 logbase --> N , which makes the complexity of the FFT O N 2 logbase --> N .

Length-8 dft decomposition

The initial decomposition of a length-8 DFT into the terms using even- and odd-indexed inputs marks the first phase ofdeveloping the FFT algorithm. When these half-length transforms are successively decomposed, we are left with the diagram shownin the bottom panel that depicts the length-8 FFT computation.

Doing an example will make computational savings more obvious. Let's look at the detailsof a length-8 DFT. As shown on [link] , we first decompose the DFT into two length-4 DFTs, with the outputs added and subtracted together in pairs.Considering [link] as the frequency index goes from 0 through 7, we recycle values fromthe length-4 DFTs into the final calculation because of the periodicity of the DFT output. Examining how pairs of outputsare collected together, we create the basic computational element known as a butterfly ( [link] ).

Butterfly

The basic computational element of the fast Fourier transform is the butterfly. It takes two complex numbers, representedby a and b , and forms the quantities shown. Each butterfly requires onecomplex multiplication and two complex additions.
By considering together the computations involving common output frequencies from the two half-length DFTs, we see that the twocomplex multiplies are related to each other, and we can reduce our computational work even further. By further decomposing thelength-4 DFTs into two length-2 DFTs and combining their outputs, we arrive at the diagram summarizing the length-8 fastFourier transform ( [link] ). Although most of the complex multiplies are quite simple(multiplying by 2 means swapping real and imaginary parts and changing their signs), let's count those forpurposes of evaluating the complexity as full complex multiplies. We have N 2 4 complex multiplies and N 8 complex additions for each stage and 2 logbase --> N 3 stages, making the number of basic computations 3 N 2 2 logbase --> N as predicted.

Note that the ordering of the input sequence in the two parts of [link] aren't quite the same. Why not? How is the ordering determined?

The upper panel has not used the FFT algorithm to compute the length-4 DFTs while the lower one has. The ordering isdetermined by the algorithm.

Other "fast" algorithms were discovered, all of which make use of how many common factors the transformlength N has. In number theory, the number of prime factors a given integer has measures how composite it is. The numbers 16 and 81 are highly composite (equaling 2 4 and 3 4 respectively), the number 18 is less so ( 2 1 · 3 2 ), and 17 not at all (it's prime). In over thirty years of Fourier transform algorithm development, the originalCooley-Tukey algorithm is far and away the most frequently used. It is so computationally efficient that power-of-twotransform lengths are frequently used regardless of what the actual length of the data.

Suppose the length of the signal were 500 ? How would you compute the spectrum of this signal using the Cooley-Tukeyalgorithm? What would the length N of the transform be?

The transform can have any greater than or equal to the actual duration of the signal. We simply“pad” the signal with zero-valued samples until a computationally advantageous signal length results. Recallthat the FFT is an algorithm to compute the DFT . Extending the length of the signal this way merely means weare sampling the frequency axis more finely than required. To use the Cooley-Tukey algorithm, the length of theresulting zero-padded signal can be 512, 1024, etc. samples long.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Pdf generation test course. OpenStax CNX. Dec 16, 2009 Download for free at http://legacy.cnx.org/content/col10278/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Pdf generation test course' conversation and receive update notifications?

Ask