<< Chapter < Page Chapter >> Page >

Evaluating trigonometric ratios is a direct process in which we make use of known values, trigonometric identities and transformations or even pre-defined trigonometric tables. The evaluation of trigonometric inequalities is somewhat inverse of this process. Consider an inequality :

tan x - 3

Clearly, we need to know “x” for which this inequality holds. As pointed out earlier, trigonometric functions are “many-one” relation. The value of “x” satisfying given inequality is not an unique interval, but a series of intervals. Incidentally, however, trigonometric function values repeat after certain “period”. So this enables us to define periodic intervals in generic manner for which trigonometric inequality holds.

Trigonometric inequality

Intervals satisfying inequality, involving tangent function.

We observe that line y = - 3 intersects tangent graph at multiple points. The sections of plots satisfying the inequality are easily identified on the graph and are shown as dark red line.

Solution of trigonometric inequality

Determination of base or fundamental interval is central to solve trigonometric inequality. The function values in this interval is repeated with a periodicity of trigonometric function. The base interval depends on the nature of trigonometric function and inequality in question. The steps to find solution of trigonometric inequality are :

1 : Convert given inequality to trigonometric equation by replacing inequality sign by equality sign.

2 : Solve resulting equation in the interval [0,2π]. There are two solutions. They are the angle values at which trigonometric function has the value which is being compared in the given inequality.

3 : Convert positive angle greater than π to equivalent negative value to account for the fact that basic interval being repeated may lie on negative side of the origin (cosine, secant and tangent function).

4 : Construct base interval between two values, keeping in mind the given inequality. It is always advantageous to draw a rough intersection of graphs of each side of given inequality.

5 : If function asymptotes (tangent, cotangent, secant and cosecant) within the interval constructed, then basic interval is limited by the angle value at which function asymptotes.

6 : Generalize solution by extending base interval with the period of the trigonometric function.

In order to understand the process, let us solve the inequality given by :

tan x - 3

This example has been selected here as it involves consideration of each step as enumerated above for finding solution of inequality. Corresponding trigonometric equation, in this case, is :

tan x = - 3

The acute angle is π/3. Further, tangent function is negative in second and fourth quarter (see sign diagram). Using value diagram in conjunction with sign diagram, solution of given equation in [0, 2π] are :

Sign and value diagram

Tangent function is negative in second and fourth quarter .

x = π - θ = π - π 3 = 2 π 3 x = 2 π - θ = 2 π - π 3 = 5 π 3

Here, second angle is greater than π. Hence, equivalent negative angle is :

y = 5 π 3 - 2 π = - π 3

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask