<< Chapter < Page Chapter >> Page >
  • Define arc length, rotation angle, radius of curvature and angular velocity.
  • Calculate the angular velocity of a car wheel spin.

In Kinematics , we studied motion along a straight line and introduced such concepts as displacement, velocity, and acceleration. Two-Dimensional Kinematics dealt with motion in two dimensions. Projectile motion is a special case of two-dimensional kinematics in which the object is projected into the air, while being subject to the gravitational force, and lands a distance away. In this chapter, we consider situations where the object does not land but moves in a curve. We begin the study of uniform circular motion by defining two angular quantities needed to describe rotational motion.

Rotation angle

When objects rotate about some axis—for example, when the CD (compact disc) in [link] rotates about its center—each point in the object follows a circular arc. Consider a line from the center of the CD to its edge. Each pit    used to record sound along this line moves through the same angle in the same amount of time. The rotation angle is the amount of rotation and is analogous to linear distance. We define the rotation angle     Δ θ size 12{Δθ} {} to be the ratio of the arc length to the radius of curvature:

Δ θ = Δ s r . size 12{Δθ= { {Δs} over {r} } "."} {}

The figure shows the back side of a compact disc. There is a scratched part on the upper right side of the C D, about one-fifth size of the whole area, with inner circular dots clearly visible. Two line segments are drawn enclosing the scratched area from the border of the C D to the middle plastic portion. A curved arrow is drawn between the two line segments near this middle portion and angle delta theta written alongside it.
All points on a CD travel in circular arcs. The pits along a line from the center to the edge all move through the same angle Δ θ size 12{Δθ} {} in a time Δ t size 12{Δt} {} .

A circle of radius r and center O is shown. A radius O-A of the circle is rotated through angle delta theta about the center O to terminate as radius O-B. The arc length A-B is marked as delta s.
The radius of a circle is rotated through an angle Δ θ size 12{Δθ} {} . The arc length Δs size 12{Δs} {} is described on the circumference.

The arc length     Δ s size 12{Δs} {} is the distance traveled along a circular path as shown in [link] Note that r size 12{r} {} is the radius of curvature    of the circular path.

We know that for one complete revolution, the arc length is the circumference of a circle of radius r size 12{r} {} . The circumference of a circle is r size 12{2πr} {} . Thus for one complete revolution the rotation angle is

Δ θ = r r = . size 12{Δθ= { {2πr} over {r} } =2π"."} {}

This result is the basis for defining the units used to measure rotation angles, Δ θ size 12{Δθ} {} to be radians    (rad), defined so that

rad = 1 revolution. size 12{2π" rad "=" 1 revolution."} {}

A comparison of some useful angles expressed in both degrees and radians is shown in [link] .

Comparison of angular units
Degree Measures Radian Measure
30º size 12{"30"°} {} π 6 size 12{ { {π} over {6} } } {}
60º size 12{"60"°} {} π 3 size 12{ { {π} over {3} } } {}
90º size 12{"90"°} {} π 2 size 12{ { {π} over {2} } } {}
120º size 12{"120"°} {} 3 size 12{ { {2π} over {3} } } {}
135º size 12{"135"°} {} 4 size 12{ { {3π} over {4} } } {}
180º size 12{"180"°} {} π size 12{π} {}
A circle is shown. Two radii of the circle, inclined at an acute angle delta theta, are shown. On one of the radii, two points, one and two are marked. The point one is inside the circle through which an arc between the two radii is shown. The point two is on the cirumfenrence of the circle. The two arc lengths are delta s one and delta s two respectively for the two points.
Points 1 and 2 rotate through the same angle ( Δ θ size 12{Δθ} {} ), but point 2 moves through a greater arc length Δ s size 12{ left (Δs right )} {} because it is at a greater distance from the center of rotation ( r ) size 12{ \( r \) } {} .

If Δ θ = 2 π size 12{Δθ=2π} {} rad, then the CD has made one complete revolution, and every point on the CD is back at its original position. Because there are 360º size 12{"360"°} {} in a circle or one revolution, the relationship between radians and degrees is thus

2 π rad = 360º size 12{2π" rad"="360" rSup { size 8{ circ } } } {}

so that

1 rad = 360º 57. . size 12{1" rad"= { {"360" rSup { size 8{ circ } } } over {2π} } ="57" "." 3 rSup { size 8{ circ } } "."} {}

Angular velocity

How fast is an object rotating? We define angular velocity     ω size 12{ω} {} as the rate of change of an angle. In symbols, this is

ω = Δ θ Δ t , size 12{ω= { {Δθ} over {Δt} } ","} {}

where an angular rotation Δ θ size 12{Δθ} {} takes place in a time Δ t size 12{Δt} {} . The greater the rotation angle in a given amount of time, the greater the angular velocity. The units for angular velocity are radians per second (rad/s).

Angular velocity ω size 12{ω} {} is analogous to linear velocity v size 12{v} {} . To get the precise relationship between angular and linear velocity, we again consider a pit on the rotating CD. This pit moves an arc length Δ s size 12{Δs} {} in a time Δ t size 12{Δt} {} , and so it has a linear velocity

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics subject knowledge enhancement course (ske). OpenStax CNX. Jan 09, 2015 Download for free at http://legacy.cnx.org/content/col11505/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics subject knowledge enhancement course (ske)' conversation and receive update notifications?

Ask