<< Chapter < Page Chapter >> Page >

If you have been in high performance computing since its beginning in the 1950s, you have programmed in several languages during that time. During the 1950s and early 1960s, you programmed in assembly language. The constraint on memory and slow clock rates made every instruction precious. With small memories, overall program size was typically small, so assembly language was sufficient. Toward the end of the 1960s, programmers began writing more of their code in a high-level language such as FORTRAN. Writing in a high-level language made your work much more portable, reliable, and maintainable. Given the increasing speed and capacity of computers, the cost of using a high-level language was something most programmers were willing to accept. In the 1970s if a program spent a particularly large amount of time in a particular routine, or the routine was part of the operating system or it was a commonly used library, most likely it was written in assembly language.

During the late 1970s and early 1980s, optimizing compilers continued to improve to the point that all but the most critical portions of general-purpose programs were written in high-level languages. On the average, the compilers generate better code than most assembly language programmers. This was often because a compiler could make better use of hardware resources such as registers. In a processor with 16 registers, a programmer might adopt a convention regarding the use of registers to help keep track of what value is in what register. A compiler can use each register as much as it likes because it can precisely track when a register is available for another use.

However, during that time, high performance computer architecture was also evolving. Cray Research was developing vector processors at the very top end of the computing spectrum. Compilers were not quite ready to determine when these new vector instructions could be used. Programmers were forced to write assembly language or create highly hand-tuned FORTRAN that called the appropriate vector routines in their code. In a sense, vector processors turned back the clock when it came to trusting the compiler for a while. Programmers never lapsed completely into assembly language, but some of their FORTRAN started looking rather un-FORTRAN like. As the vector computers matured, their compilers became increasingly able to detect when vectorization could be performed. At some point, the compilers again became better than programmers on these architectures. These new compilers reduced the need for extensive directives or language extensions. The Livermore Loops was a benchmark that specifically tested the capability of a compiler to effectively optimize a set of loops. In addition to being a performance benchmark, it was also a compiler benchmark.

The RISC revolution led to an increasing dependence on the compiler. Programming early RISC processors such as the Intel i860 was painful compared to CISC processors. Subtle differences in the way a program was coded in machine language could have a significant impact on the overall performance of the program. For example, a programmer might have to count the instruction cycles between a load instruction and the use of the results of the load in a computational instruction. As superscalar processors were developed, certain pairs of instructions could be issued simultaneously, and others had to be issued serially. Because there were a large number of different RISC processors produced, programmers did not have time to learn the nuances of wringing the last bit of performance out of each processor. It was much easier to lock the processor designer and the compiler writer together (hopefully they work for the same company) and have them hash out the best way to generate the machine code. Then everyone would use the compiler and get code that made reasonably good use of the hardware.

The compiler became an important tool in the processor design cycle. Processor designers had much greater flexibility in the types of changes they could make. For example, it would be a good design in the next revision of a processor to execute existing codes 10% slower than a new revision, but by recompiling the code, it would perform 65% faster. Of course it was important to actually provide that compiler when the new processor was shipped and have the compiler give that level of performance across a wide range of codes rather than just one particular benchmark suite.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask