<< Chapter < Page Chapter >> Page >
  • Define nuclear fusion.
  • Discuss processes to achieve practical fusion energy generation.

While basking in the warmth of the summer sun, a student reads of the latest breakthrough in achieving sustained thermonuclear power and vaguely recalls hearing about the cold fusion controversy. The three are connected. The Sun’s energy is produced by nuclear fusion (see [link] ). Thermonuclear power is the name given to the use of controlled nuclear fusion as an energy source. While research in the area of thermonuclear power is progressing, high temperatures and containment difficulties remain. The cold fusion controversy centered around unsubstantiated claims of practical fusion power at room temperatures.

This figure shows Sun rays piercing clouds to illuminate a natural scene.
The Sun’s energy is produced by nuclear fusion. (credit: Spiralz)

Nuclear fusion is a reaction in which two nuclei are combined, or fused , to form a larger nucleus. We know that all nuclei have less mass than the sum of the masses of the protons and neutrons that form them. The missing mass times c 2 size 12{c rSup { size 8{2} } } {} equals the binding energy of the nucleus—the greater the binding energy, the greater the missing mass. We also know that BE / A size 12{"BE"/A} {} , the binding energy per nucleon, is greater for medium-mass nuclei and has a maximum at Fe (iron). This means that if two low-mass nuclei can be fused together to form a larger nucleus, energy can be released. The larger nucleus has a greater binding energy and less mass per nucleon than the two that combined. Thus mass is destroyed in the fusion reaction, and energy is released (see [link] ). On average, fusion of low-mass nuclei releases energy, but the details depend on the actual nuclides involved.

This figure is a graph of atomic mass as horizontal axis versus binding energy per nucleon as vertical axis showing that, as a function of atomic mass, the binding energy per nucleon steeply increases from zero to about 9 M e V per nucleon then, after attaining a peak, slowly decreases to about 8 M e V per nucleon.
Fusion of light nuclei to form medium-mass nuclei destroys mass, because BE / A size 12{"BE"/A} {} is greater for the product nuclei. The larger BE / A size 12{"BE"/A} {} is, the less mass per nucleon, and so mass is converted to energy and released in these fusion reactions.

The major obstruction to fusion is the Coulomb repulsion between nuclei. Since the attractive nuclear force that can fuse nuclei together is short ranged, the repulsion of like positive charges must be overcome to get nuclei close enough to induce fusion. [link] shows an approximate graph of the potential energy between two nuclei as a function of the distance between their centers. The graph is analogous to a hill with a well in its center. A ball rolled from the right must have enough kinetic energy to get over the hump before it falls into the deeper well with a net gain in energy. So it is with fusion. If the nuclei are given enough kinetic energy to overcome the electric potential energy due to repulsion, then they can combine, release energy, and fall into a deep well. One way to accomplish this is to heat fusion fuel to high temperatures so that the kinetic energy of thermal motion is sufficient to get the nuclei together.

The graph shows potential energy as a function of distance r. The potential energy is negative for small r, then rises sharply to a positive peak at medium r, then falls back asymptotically to zero for large r. The curve at small r is labeled “attractive nuclear,” and the curve at large r is labeled “repulsive Coulomb.” A small ball is drawn to the left of the peak with an arrow indicating that the ball is moving down the potential energy curve toward the negative potential energy well. This ball is labeled “pulled together.” Another small ball is drawn to the right of the peak with an arrow indicating it is moving toward larger r. This ball is labeled “repelled.”
Potential energy between two light nuclei graphed as a function of distance between them. If the nuclei have enough kinetic energy to get over the Coulomb repulsion hump, they combine, release energy, and drop into a deep attractive well. Tunneling through the barrier is important in practice. The greater the kinetic energy and the higher the particles get up the barrier (or the lower the barrier), the more likely the tunneling.
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask