Find the currents flowing in the circuit in
[link] .
Strategy
This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel techniques—it is necessary to use Kirchhoff’s rules. Currents have been labeled
,
, and
in the figure and assumptions have been made about their directions. Locations on the diagram have been labeled with letters a through h. In the solution we will apply the junction and loop rules, seeking three independent equations to allow us to solve for the three unknown currents.
Solution
We begin by applying Kirchhoff’s first or junction rule at point a. This gives
since
flows into the junction, while
and
flow out. Applying the junction rule at e produces exactly the same equation, so that no new information is obtained. This is a single equation with three unknowns—three independent equations are needed, and so the loop rule must be applied.
Now we consider the loop abcdea. Going from a to b, we traverse
in the same (assumed) direction of the current
, and so the change in potential is
. Then going from b to c, we go from
to +, so that the change in potential is
. Traversing the internal resistance
from c to d gives
. Completing the loop by going from d to a again traverses a resistor in the same direction as its current, giving a change in potential of
.
The loop rule states that the changes in potential sum to zero. Thus,
Substituting values from the circuit diagram for the resistances and emf, and canceling the ampere unit gives
Now applying the loop rule to aefgha (we could have chosen abcdefgha as well) similarly gives
Note that the signs are reversed compared with the other loop, because elements are traversed in the opposite direction. With values entered, this becomes
These three equations are sufficient to solve for the three unknown currents. First, solve the second equation for
:
Now solve the third equation for
:
Substituting these two new equations into the first one allows us to find a value for
:
Combining terms gives
Substituting this value for
back into the fourth equation gives
The minus sign means
flows in the direction opposite to that assumed in
[link] .
Finally, substituting the value for
into the fifth equation gives
Discussion
Just as a check, we note that indeed
. The results could also have been checked by entering all of the values into the equation for the abcdefgha loop.
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills