<< Chapter < Page Chapter >> Page >

Mathematics

Common fractions

Educator section

Memorandum

8. a) a) 2 6 size 12{ { { size 8{2} } over { size 8{6} } } } {}

b) 1 3 size 12{ { { size 8{1} } over { size 8{3} } } } {}

c) 3 9 size 12{ { { size 8{3} } over { size 8{9} } } } {}

d) 4 12 size 12{ { { size 8{4} } over { size 8{"12"} } } } {}

b) Every one eats the same amount of food. / Fractions are the same.

9. 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} = 6 9 size 12{ { { size 8{6} } over { size 8{9} } } } {}

4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} = 80 100 size 12{ { { size 8{"80"} } over { size 8{"100"} } } } {}

18 20 size 12{ { { size 8{"18"} } over { size 8{"20"} } } } {} = 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

75 100 size 12{ { { size 8{"75"} } over { size 8{"100"} } } } {} = 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {}

2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} = 16 24 size 12{ { { size 8{"16"} } over { size 8{"24"} } } } {}

25 30 size 12{ { { size 8{"25"} } over { size 8{"30"} } } } {} = 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {}

Leaner section

Content

Activity: fractions [lo 1.4.1, lo 1.11, lo 2.1.5]

8. Four learners have been rewarded with a chocolate for their good work. They don’t eat it up immediately, but only the section that has been coloured in.

i)

ii)

iii)

iv)

  1. What fraction does each one eat?

i) Carli: ___________________

ii) Peter-John: ______________

iii) Kayla: __________________

iv) Vusi: ___________________

b) What do you notice?

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

8.2 Do you still remember?

In our example 2 6 = 1 3 = 3 9 = 4 12 size 12{ { { size 8{2} } over { size 8{6} } } ``=`` { { size 8{1} } over { size 8{3} } } ``=`` { { size 8{3} } over { size 8{9} } } ``=`` { { size 8{4} } over { size 8{"12"} } } } {}

We call these fractions equivalent fractions.

Equivalent fractions are thus the same quantity or equal to each other

8.3 TAKE NOTE:

To form an equivalent fraction, you must multiply or divide the numerator AND denominator by THE SAME NUMBER.

e.g.
2 × 4
5 × 4
=
8
20
;
18 6
24 6
=
3
4

9. Join the fraction in column A with its equivalent in column B:

A B
2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {}
4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} 6 9 size 12{ { { size 8{6} } over { size 8{9} } } } {}
18 20 size 12{ { { size 8{"18"} } over { size 8{"20"} } } } {} 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}
75 100 size 12{ { { size 8{"75"} } over { size 8{"100"} } } } {} 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {}
2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} 16 24 size 12{ { { size 8{"16"} } over { size 8{"24"} } } } {}
25 30 size 12{ { { size 8{"25"} } over { size 8{"30"} } } } {} 80 100 size 12{ { { size 8{"80"} } over { size 8{"100"} } } } {}

Assessment

Learning Outcome 1: The learner will be able to recognise, describe and represent numbers and their relationships, and to count, estimate, calculate and check with competence and confidence in solving problems.

Assessment Standard 1.4: We know this when the learner recognises and uses equivalent forms of the rational numbers listed above, including:

1.4.1: common fractions;

1.11: recognises, describes and uses:

Learning Outcome 2: The learner will be able to recognise, describe and represent patterns and relationships, as well as to solve problems using algebraic language and skills.

Assessment Standard 2.1: We know this when the learner investigates and extends numeric and geometric patterns looking for a relationship or rules, including patterns:

2.1.5: represented in tables.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 7. OpenStax CNX. Sep 16, 2009 Download for free at http://cnx.org/content/col11075/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 7' conversation and receive update notifications?

Ask