<< Chapter < Page Chapter >> Page >

Convolution is very useful and powerful concept. It appears quite frequently in DSP discussion. It is begun with a rather twisted definition (folding before shifting), but it then becomes the representation of linear systems, and is linked to the Fourier transform and the z-transform.

As for convolution, correlation is defined for both analog and digital signals. Correlation of two signals measure the degree of their similarity. But correlation of a signal with itself also has meaning and application. The strength of convolution lies in the fact that if applies to signals as well as systems, whereas correlation only applies to signals. Correlation is used in many areas such as radar, geophysics, data communications, and, especially, random processes.

Cross-correlation and auto-correlation

Cross-correlation, or correlation for short, between two discrete-time signals x(n) and v(n), assumed real-valued, is defined as

R x v ( m ) = n = x ( n ) v ( n m ) m = 0 , ± 1 , ± 2 , ... MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadAhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaabCaeaacaWG4bGaaiikaiaad6gacaGGPaGaamODaiaacIcacaWGUbGaeyOeI0IaamyBaiaacMcaaSqaaiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoakiaaywW7caaMf8UaamyBaiabg2da9iaaicdacaGGSaGaaGjbVlabgglaXkaaigdacaGGSaGaaGjbVlabgglaXkaaikdacaGGSaGaaiOlaiaac6cacaGGUaaaaa@5F17@

or equivalently

R x v ( m ) = n = x ( n + m ) v ( n ) m = 0 , ± 1 , ± 2 , ... MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadAhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaabCaeaacaWG4bGaaiikaiaad6gacqGHRaWkcaWGTbGaaiykaiaadAhacaGGOaGaamOBaiaacMcaaSqaaiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoakiaaywW7caaMf8UaamyBaiabg2da9iaaicdacaGGSaGaaGjbVlabgglaXkaaigdacaGGSaGaaGjbVlabgglaXkaaikdacaGGSaGaaiOlaiaac6cacaGGUaaaaa@5F0C@

Notice that correlation at index n is the summation of the product of one signal and other signal shifted.

When the signals x(n) and v(n) are interchanged, we get

R v x ( m ) = n = v ( n ) x ( n m ) m = 0 , ± 1 , ± 2 , ... MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamODaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaabCaeaacaWG2bGaaiikaiaad6gacaGGPaGaamiEaiaacIcacaWGUbGaeyOeI0IaamyBaiaacMcaaSqaaiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoakiaaywW7caaMf8UaamyBaiabg2da9iaaicdacaGGSaGaaGjbVlabgglaXkaaigdacaGGSaGaaGjbVlabgglaXkaaikdacaGGSaGaaiOlaiaac6cacaGGUaaaaa@5F17@

or equivalently

R v x ( m ) = n = v ( n + m ) x ( n ) m = 0 , ± 1 , ± 2 , ... MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamODaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaabCaeaacaWG2bGaaiikaiaad6gacqGHRaWkcaWGTbGaaiykaiaadIhacaGGOaGaamOBaiaacMcaaSqaaiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoakiaaywW7caaMf8UaamyBaiabg2da9iaaicdacaGGSaGaaGjbVlabgglaXkaaigdacaGGSaGaaGjbVlabgglaXkaaikdacaGGSaGaaiOlaiaac6cacaGGUaaaaa@5F0C@

Thus

R x v ( m ) = R x v ( m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadAhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0JaamOuamaaBaaaleaacaWG4bGaamODaaqabaGccaGGOaGaeyOeI0IaamyBaiaacMcaaaa@4270@

This result shows that one correlation is the flipped version (mirror-imaged) of the other, but otherwise contains the same information.

The evalution of correlation is similar to that of convolution expect no signal flipping is need, hence the computing steps are slide (shift) – multiply – add. The method of sequence (vector), as for the convolution ( section ), is one of the possible ways.

Find the cross-correlation of the following signals x ( n ) = [ 2 , 5 , 2 , 4 ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadIhacaGGOaGaamOBaiaacMcacqGH9aqpdaWadaqaaiaaikdacaGGSaGaaGjbVlaaiwdacaGGSaGaaGjbVlaaikdacaGGSaGaaGjbVlaaisdaaiaawUfacaGLDbaaaaa@45CA@ v ( n ) = [ 2 , 3 , 1 ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadAhacaGGOaGaamOBaiaacMcacqGH9aqpdaWadaqaaiaaikdacaGGSaGaaGjbVlabgkHiTiaaiodacaGGSaGaaGjbVlaaigdaaiaawUfacaGLDbaaaaa@43B7@ The figures in bold face are samples at origin.

Solution

First we choose the shorter sequence, in this case v(n), to be shifted, and the longer sequence, x(n), to stay stationary. Next the evaluate the correlation at m = 0 (no shifting yet), then the correlation at m = 1, 2, 3 … (shifting v(n) to the right) until v(n) has gone past x(n) completely. Next, we evaluate the correlation at = -1, -2, -3 … (shifting v(n) to the left) until v(n) has gone past x(n) completely. At each value of m, we do the multiplication and summing. The evaluation is arranged as follows. Remember to align the values of x(n) and v(n) at origin at be beginning.

x ( n ) = 2 , 5 , 2 , 4 , m = 0 : v ( n ) = 0 , 2 , 3 , 1 R ( 0 ) = 8 m = 1 : v ( n 1 ) = 0 , 0 , 2 , 3 R ( 1 ) = 8 m = 2 : v ( n 2 ) = 0 , 0 , 0 , 2 R ( 2 ) = 8 m = 1 : v ( n + 1 ) = 2 , 3 , 1 , 0 R ( 1 ) = 9 m = 2 : v ( n + 2 ) = 3 , 1 , 0 , 0 R ( 2 ) = 1 m = 3 : v ( n + 3 ) = 1 , 0 , 0 , 0 R ( 3 ) = 2 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOabaeqabaGaaGzbVlaaywW7caaMf8UaaGjbVlaaysW7caWG4bGaaiikaiaad6gacaGGPaGaeyypa0JaaGOmaiaacYcacaaMe8UaaGynaiaacYcacaaMe8UaaGOmaiaacYcacaaMe8UaaGinaiaacYcaaeaaaeaacaWGTbGaeyypa0JaaGimaiaacQdacaaMf8UaamODaiaacIcacaWGUbGaaiykaiabg2da9iaaicdacaGGSaGaaGjbVlaaikdacaGGSaGaaGjbVlaaiodacaGGSaGaaGjbVlabgkHiTiaaigdacaaMf8UaeyO0H4TaaGzbVlaadkfacaGGOaGaaGimaiaacMcacqGH9aqpcaaI4aaabaaabaGaamyBaiabg2da9iaaigdacaGG6aGaaGzbVlaadAhacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaeyypa0JaaGimaiaacYcacaaMe8UaaGimaiaacYcacaaMe8UaaGOmaiaacYcacaaMe8UaeyOeI0IaaG4maiaaywW7cqGHshI3caaMf8UaamOuaiaacIcacaaIXaGaaiykaiabg2da9iabgkHiTiaaiIdaaeaacaaMf8oabaGaamyBaiabg2da9iaaikdacaGG6aGaaGzbVlaadAhacaGGOaGaamOBaiabgkHiTiaaikdacaGGPaGaeyypa0JaaGimaiaacYcacaaMe8UaaGimaiaacYcacaaMe8UaaGimaiaacYcacaaMe8UaaGOmaiaaywW7cqGHshI3caaMf8UaamOuaiaacIcacaaIYaGaaiykaiabg2da9iaaiIdaaeaaaeaacaWGTbGaeyypa0JaeyOeI0IaaGymaiaacQdacaaMf8UaamODaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacqGH9aqpcaaIYaGaaiilaiaaysW7cqGHsislcaaIZaGaaiilaiaaysW7caaIXaGaaiilaiaaysW7caaIWaGaaGzbVlabgkDiElaaywW7caWGsbGaaiikaiabgkHiTiaaigdacaGGPaGaeyypa0JaeyOeI0IaaGyoaaqaaaqaaiaad2gacqGH9aqpcqGHsislcaaIYaGaaiOoaiaaywW7caWG2bGaaiikaiaad6gacqGHRaWkcaaIYaGaaiykaiabg2da9iabgkHiTiaaiodacaGGSaGaaGjbVlaaigdacaGGSaGaaGjbVlaaicdacaGGSaGaaGjbVlaaicdacaaMf8UaeyO0H4TaaGzbVlaadkfacaGGOaGaeyOeI0IaaGOmaiaacMcacqGH9aqpcqGHsislcaaIXaaabaaabaGaamyBaiabg2da9iabgkHiTiaaiodacaGG6aGaaGzbVlaadAhacaGGOaGaamOBaiabgUcaRiaaiodacaGGPaGaeyypa0JaaGymaiaacYcacaaMe8UaaGimaiaacYcacaaMe8UaaGimaiaacYcacaaMe8UaaGimaiaaywW7cqGHshI3caaMf8UaamOuaiaacIcacqGHsislcaaIZaGaaiykaiabg2da9iaaikdaaaaa@10BC@

Final result :

R x v ( m ) = [ 2 , 1 , 9 , 8 , 8 , 8 ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadAhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaamWaaeaacaaIYaGaaiilaiaaysW7cqGHsislcaaIXaGaaiilaiaaysW7cqGHsislcaaI5aGaaiilaiaaysW7caaI4aGaaiilaiaaysW7cqGHsislcaaI4aGaaiilaiaaysW7caaI4aaacaGLBbGaayzxaaaaaa@509D@

Given two signals x ( n ) = a n u ( n ) v ( n ) = b n u ( n ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOabaeqabaGaamiEaiaacIcacaWGUbGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaad6gaaaGccaWG1bGaaiikaiaad6gacaGGPaaabaaabaGaamODaiaacIcacaWGUbGaaiykaiabg2da9iaadkgadaahaaWcbeqaaiaad6gaaaGccaWG1bGaaiikaiaad6gacaGGPaaaaaa@492E@ Compute the cross-corelation.

Solution

The cross-correlation is

R v x ( m ) = n = [ a n u ( n ) ] [ b n m u ( n m ) ] = n = a n b n m u ( n ) u ( n m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOabaeqabaGaamOuamaaBaaaleaacaWG2bGaamiEaaqabaGccaGGOaGaamyBaiaacMcacqGH9aqpdaaeWbqaamaadmaabaGaamyyamaaCaaaleqabaGaamOBaaaakiaadwhacaGGOaGaamOBaiaacMcaaiaawUfacaGLDbaaaSqaaiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoakmaadmaabaGaamOyamaaCaaaleqabaGaamOBaiabgkHiTiaad2gaaaGccaWG1bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaGaay5waiaaw2faaaqaaaqaaiaaywW7caaMf8UaaGzbVlabg2da9maaqahabaGaamyyamaaCaaaleqabaGaamOBaaaakiaadkgadaahaaWcbeqaaiaad6gacqGHsislcaWGTbaaaOGaamyDaiaacIcacaWGUbGaaiykaiaadwhacaGGOaGaamOBaiabgkHiTiaad2gacaGGPaaaleaacaWGUbGaeyypa0JaeyOeI0IaeyOhIukabaGaeyOhIukaniabggHiLdaaaaa@72C3@

The summation is divided into two ranges of of m depending on the shifting direction of v(n) with respect to x(n).

  • For m<0, v(n) is shifted to the left of x(n), the summation lower limit is n = 0 :

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ece 454 and ece 554 supplemental reading. OpenStax CNX. Apr 02, 2012 Download for free at http://cnx.org/content/col11416/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ece 454 and ece 554 supplemental reading' conversation and receive update notifications?

Ask