<< Chapter < Page Chapter >> Page >

R x v ( m ) = n = [ a n u ( n ) ] [ b n m u ( n m ) ] = n = a n b n m u ( n ) u ( n m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOabaeqabaGaamOuamaaDaaaleaacaWG4bGaamODaaqaaiabgkHiTaaakiaacIcacaWGTbGaaiykaiabg2da9maaqahabaWaamWaaeaacaWGHbWaaWbaaSqabeaacaWGUbaaaOGaamyDaiaacIcacaWGUbGaaiykaaGaay5waiaaw2faamaadmaabaGaamOyamaaCaaaleqabaGaamOBaiabgkHiTiaad2gaaaGccaWG1bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaGaay5waiaaw2faaaWcbaGaamOBaiabg2da9iabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHris5aaGcbaaabaGaaGzbVlaaywW7caaMf8Uaeyypa0ZaaabCaeaacaWGHbWaaWbaaSqabeaacaWGUbaaaOGaamOyamaaCaaaleqabaGaamOBaiabgkHiTiaad2gaaaGccaWG1bGaaiikaiaad6gacaGGPaGaamyDaiaacIcacaWGUbGaeyOeI0IaamyBaiaacMcaaSqaaiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoaaaaa@73B1@

Where the formula of infinite geometric serics ( Equation ) has been used. Since m<0, we can write

R x v ( m ) = 1 1 a b b m u ( m 1 ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaqhaaWcbaGaamiEaiaadAhaaeaacqGHsislaaGccaGGOaGaamyBaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaamyyaiaadkgaaaGaamOyamaaCaaaleqabaGaeyOeI0IaamyBaaaakiaadwhacaGGOaGaamyBaiabgkHiTiaaigdacaGGPaaaaa@494B@

  • For m 0 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaad2gacqGHLjYScaaIWaaaaa@394F@ , v(n) is shifted to the right, the summation lower limit is n = m :

R xv + ( m ) = n = m a n b n m size 12{R rSub { size 8{ ital "xv"} } rSup { size 8{+{}} } \( m \) = Sum cSub { size 8{n=m} } cSup { size 8{ infinity } } {a rSup { size 8{n} } b rSup { size 8{n - m} } } } {}

Let’s make a change of variable k = n – m to get

R x v + ( m ) = k = 0 a k + m b k = a m k = 0 ( a b ) k = 1 1 a b , | a b | < 0 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOabaeqabaGaamOuamaaDaaaleaacaWG4bGaamODaaqaaiabgUcaRaaakiaacIcacaWGTbGaaiykaiabg2da9maaqahabaGaamyyamaaCaaaleqabaGaam4AaiabgUcaRiaad2gaaaGccaWGIbWaaWbaaSqabeaacaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWGTbaaaOWaaabCaeaacaGGOaGaamyyaiaadkgacaGGPaWaaWbaaSqabeaacaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaakeaaaeaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlabg2da9maalaaabaGaaGymaaqaaiaaigdacqGHsislcaWGHbGaamOyaaaacaaMe8UaaiilaiaaywW7daabdaqaaiaadggacaWGIbaacaGLhWUaayjcSdGaeyipaWJaaGimaaaaaa@734D@

Where the formula finite geometric serics ( Equation ) has been used. Since m size 12{>= {}} {} 0, we can write

R xv + ( m ) = 1 1 ab a m u ( m ) size 12{R rSub { size 8{ ital "xv"} } rSup { size 8{+{}} } \( m \) = { {1} over {1 - ital "ab"} } a rSup { size 8{m} } u \( m \) } {}

On combining the two parts, the overall cross-correlation results

R xv ( m ) = R xv ( m ) + R xv + ( m ) = 1 1 ab [ b m u ( m 1 ) + a m u ( m ) ] size 12{R rSub { size 8{ ital "xv"} } \( m \) =R rSub { size 8{ ital "xv"} } rSup { size 8{ - {}} } \( m \) +R rSub { size 8{ ital "xv"} } rSup { size 8{+{}} } \( m \) = { {1} over {1 - ital "ab"} } \[ b rSup { size 8{ - m} } u \( m - 1 \) +a rSup { size 8{m} } u \( m \) \] } {}

Auto-correlation

Auto-correlation of a signal x(n) is the cross-correlation with itself :

R x x ( m ) = n = x ( n ) x ( n m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaabCaeaacaWG4bGaaiikaiaad6gacaGGPaGaamiEaiaacIcacaWGUbGaeyOeI0IaamyBaiaacMcaaSqaaiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoaaaa@4CB0@

or equivalently

R x x ( m ) = n = x ( n + m ) x ( n ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaabCaeaacaWG4bGaaiikaiaad6gacqGHRaWkcaWGTbGaaiykaiaadIhacaGGOaGaamOBaiaacMcaaSqaaiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoaaaa@4CA5@

At m = 0 (no shifting yet) the auto-correlation is maximum because the signal superimposes completely with itself. The correlation decreases as m increases in both directions.

The auto-correlation is an even symmetric function of m :

R x x ( m ) = R x x ( m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0JaamOuamaaBaaaleaacaWG4bGaamiEaaqabaGccaGGOaGaeyOeI0IaamyBaiaacMcaaaa@4274@

Find the expression for the auto-correlation of the signal given in Example 2.8.2 x ( n ) = a n u ( n ) size 12{x \( n \) =a rSup { size 8{n} } u \( n \) } {}

Solution

We have

R xx ( m ) = n = x ( n ) x ( n m ) = n = a n a n m u ( n ) u ( n m ) size 12{R rSub { size 8{ ital "xx"} } \( m \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {x \( n \) x \( n - m \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {a rSup { size 8{n} } a rSup { size 8{n - m} } } } u \( n \) u \( n - m \) } {}

Since R xx ( m ) size 12{R rSub { size 8{ ital "xx"} } \( m \) } {} iseven symmetric we need to compute only the R xx + ( m ) size 12{R rSub { size 8{ ital "xx"} } rSup { size 8{+{}} } \( m \) } {} for m size 12{>= {}} {} 0 then generalize the result for the correlation.

For m 0 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaad2gacqGHLjYScaaIWaaaaa@394F@

R xx + ( m ) = n = m a n a n m size 12{R rSub { size 8{ ital "xx"} } rSup { size 8{+{}} } \( m \) = Sum cSub { size 8{n=m} } cSup { size 8{ infinity } } {a rSup { size 8{n} } a rSup { size 8{n - m} } } } {}

Make a change of varible k = n – m as in previous example :

R xx + ( m ) = k = 0 a k + m a k = a m k = 0 a 2k = a m 1 a 2 size 12{R rSub { size 8{ ital "xx"} } rSup { size 8{+{}} } \( m \) = Sum cSub { size 8{k=0} } cSup { size 8{ infinity } } {a rSup { size 8{k+m} } a rSup { size 8{k} } =a rSup { size 8{m} } Sum cSub { size 8{k=0} } cSup { size 8{ infinity } } {a rSup { size 8{2k} } = { {a rSup { size 8{m} } } over {1 - a rSup { size 8{2} } } } } } } {} , a 2 < 1 size 12{ lline a rline rSup { size 8{2} }<1} {}

Above result is for m 0 MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaad2gacqGHLjYScaaIWaaaaa@394F@ . Now for all m we just write m size 12{ lline m rline } {} for m because of the even symmetry of the auto-correlation. So

R xx ( m ) = a m 1 a 2 size 12{R rSub { size 8{ ital "xx"} } \( m \) = { {a rSup { size 8{ lline m rline } } } over {1 - a rSup { size 8{2} } } } } {}

Correlation and data communication

Consider a digital signal x(n) transmitted to the far end of the communication channel. It reaches the receiver n 0 size 12{n rSub { size 8{0} } } {} samples later, becoming x(n - n 0 size 12{ {} rSub { size 8{0} } } {} ), and it is also added with random noise z(n). Thus the total signal at the receiver is

y ( n ) = x ( n 1 ) + z ( n ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadMhacaGGOaGaamOBaiaacMcacqGH9aqpcaWG4bGaaiikaiaad6gacqGHsislcaaIXaGaaiykaiabgUcaRiaadQhacaGGOaGaamOBaiaacMcaaaa@434B@

Now let’s look at the cross-correlation betwwen y(n) and x(n) :

R y x ( m ) = n = y ( n ) x ( n m ) = n = [ x ( n 1 ) + z ( n ) ] x ( n m ) = n = x ( n 1 ) x ( n m ) + z ( n ) x ( n m ) = R x x ( m 1 ) + R z x ( m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOabaeqabaGaamOuamaaBaaaleaacaWG5bGaamiEaaqabaGccaGGOaGaamyBaiaacMcacqGH9aqpdaaeWbqaaiaadMhacaGGOaGaamOBaiaacMcacaWG4bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaiabg2da9maaqahabaWaamWaaeaacaWG4bGaaiikaiaad6gacqGHsislcaaIXaGaaiykaiabgUcaRiaadQhacaGGOaGaamOBaiaacMcaaiaawUfacaGLDbaacaWG4bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaWcbaGaamOBaiabg2da9iabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHris5aaWcbaGaamOBaiabg2da9iabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHris5aaGcbaaabaGaaGzbVlaaywW7caaMf8Uaeyypa0ZaaabCaeaacaWG4bGaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaadIhacaGGOaGaamOBaiabgkHiTiaad2gacaGGPaaaleaacaWGUbGaeyypa0JaeyOeI0IaeyOhIukabaGaeyOhIukaniabggHiLdGccqGHRaWkdaaeWbqaaiaadQhacaGGOaGaamOBaiaacMcacaWG4bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaWcbaaabaaaniabggHiLdaakeaaaeaacaaMf8UaaGzbVlaaywW7cqGH9aqpcaWGsbWaaSbaaSqaaiaadIhacaWG4baabeaakiaacIcacaWGTbGaeyOeI0IaaGymaiaacMcacqGHRaWkcaWGsbWaaSbaaSqaaiaadQhacaWG4baabeaakiaacIcacaWGTbGaaiykaaaaaa@9C6C@

The result shows that the cross-correlation consists of two compoments : The auto-correlation R xx ( m m 0 ) size 12{R rSub { size 8{ ital "xx"} } \( m - m rSub { size 8{0} } \) } {} of the transmitted signal but shifted in time, and the cross-correlation R xz ( m ) size 12{R"" lSub { size 8{ ital "xz"} } \( m \) } {} between the transmitted signal x(n) and corrupting noise z(n). The meaning is that R xx ( m m 0 ) size 12{R rSub { size 8{ ital "xx"} } \( m - m rSub { size 8{0} } \) } {} is usually larger than R xz ( m ) size 12{R"" lSub { size 8{ ital "xz"} } \( m \) } {} and has peak at m = n 0 size 12{ {} rSub { size 8{0} } } {} , whereas R xz ( m ) size 12{R"" lSub { size 8{ ital "xz"} } \( m \) } {} is usually smaller due to the random nature of noise and the independence of the signal and noise. Thus by examining R yx ( m ) size 12{R rSub { size 8{ ital "yx"} } \( m \) } {} we know the delay n 0 size 12{n rSub { size 8{0} } } {} of receiving signal.

Consider the transmitted signal and corrupting noise as follows x ( n ) = [ 4 , 3 , 1 , 2 , 7 ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadIhacaGGOaGaamOBaiaacMcacqGH9aqpdaWadaqaaiaaisdacaGGSaGaaGjbVlaaiodacaGGSaGaaGjbVlaaigdacaGGSaGaaGjbVlaaikdacaGGSaGaaGjbVlaaiEdaaiaawUfacaGLDbaaaaa@48C5@ x ( n ) = [ 0.7 , 0.5 , 0 , 0.8 , 0.6 , 0.4 ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadIhacaGGOaGaamOBaiaacMcacqGH9aqpdaWadaqaaiaaicdacaGGUaGaaG4naiaacYcacaaMe8UaeyOeI0IaaGimaiaac6cacaaI1aGaaiilaiaaysW7caaIWaGaaiilaiaaysW7cqGHsislcaaIWaGaaiOlaiaaiIdacaGGSaGaaGjbVlabgkHiTiaaicdacaGGUaGaaGOnaiaacYcacaaMe8UaeyOeI0IaaGimaiaac6cacaaI0aaacaGLBbGaayzxaaaaaa@5699@ The noise, generated by a random noise generator programme, has uniform destribution with amplitudes in the interval (-1, 1). The signal received at receiver is y ( n ) = x ( n 1 ) + z ( n ) n = 0 , 1 , 2 , ... MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadMhacaGGOaGaamOBaiaacMcacqGH9aqpcaWG4bGaaiikaiaad6gacqGHsislcaaIXaGaaiykaiabgUcaRiaadQhacaGGOaGaamOBaiaacMcacaaMf8UaaGzbVlaaywW7caWGUbGaeyypa0JaaGimaiaacYcacaaMe8UaaGymaiaacYcacaaMe8UaaGOmaiaacYcacaGGUaGaaiOlaiaac6caaaa@535F@ Find the cross-correlation R yx ( m ) size 12{R rSub { size 8{ ital "yx"} } \( m \) } {} .

Solution

Without going details of evalution, only the results are mentioned :

  • Auto-correlation of x(m) : R x x ( m ) = [ 12 , 17 , 13 , 39 , 23 , 13 , 17 , 12 ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaamWaaeaacaaIXaGaaGOmaiaacYcacaaMe8UaaGymaiaaiEdacaGGSaGaaGjbVlaaigdacaaIZaGaaiilaiaaysW7caaIZaGaaGyoaiaacYcacaaMe8UaaGOmaiaaiodacaGGSaGaaGjbVlaaigdacaaIZaGaaiilaiaaysW7caaIXaGaaG4naiaacYcacaaMe8UaaGymaiaaikdaaiaawUfacaGLDbaaaaa@59A1@
  • Cross-correlation beween x(n) and z(n) : R z x ( m ) = [ 16 , 1.2 , 1.8 , 2.6 , 2.8 , 1.7 , 0.8 , 0.1 , 2.1 ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamOEaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaamWaaeaacqGHsislcaaIXaGaaGOnaiaacYcacaaMe8UaaGymaiaac6cacaaIYaGaaiilaiaaysW7cqGHsislcaaIXaGaaiOlaiaaiIdacaGGSaGaaGjbVlabgkHiTiaaikdacaGGUaGaaGOnaiaacYcacaaMe8UaeyOeI0IaaGOmaiaac6cacaaI4aGaaiilaiaaysW7caaIXaGaaiOlaiaaiEdacaGGSaGaaGjbVlabgkHiTiaaicdacaGGUaGaaGioaiaacYcacaaMe8UaeyOeI0IaaGimaiaac6cacaaIXaGaaiilaiaaysW7caaIYaGaaiOlaiaaigdaaiaawUfacaGLDbaaaaa@687C@
  • Cross-correlation beween y(n) and x(n) : R y y ( m ) = [ 1.6 , 1.2 , 10.2 , 14.4 , 10.2 , 21.3 , 38.2 , 22.7 , 12.9 ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamyEaiaadMhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaamWaaeaacqGHsislcaaIXaGaaiOlaiaaiAdacaGGSaGaaGjbVlaaigdacaGGUaGaaGOmaiaacYcacaaMe8UaaGymaiaaicdacaGGUaGaaGOmaiaacYcacaaMe8UaaGymaiaaisdacaGGUaGaaGinaiaacYcacaaMe8UaaGymaiaaicdacaGGUaGaaGOmaiaacYcacaaMe8UaaGOmaiaaigdacaGGUaGaaG4maiaacYcacaaMe8UaaG4maiaaiIdacaGGUaGaaGOmaiaacYcacaaMe8UaaGOmaiaaikdacaGGUaGaaG4naiaacYcacaaMe8UaaGymaiaaikdacaGGUaGaaGyoaaGaay5waiaaw2faaaaa@69AD@

The highest value 38.2 of R yy size 12{R rSub { size 8{ ital "yy"} } } {} oceurs at index m = 1 as expected.

Correlation of periodic signals

For two period signals x(n) and v(n) having the same period of N indices (samples), the cross-correlation and auto-correlation are defined as

R x v ( m ) = 1 N n = 0 N 1 x ( n ) v ( n m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadAhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOtaaaadaaeWbqaaiaadIhacaGGOaGaamOBaiaacMcacaWG2bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaWcbaGaamOBaiabg2da9iaaicdaaeaacaWGobGaeyOeI0IaaGymaaqdcqGHris5aaaa@4DB0@

R x x ( m ) = 1 N k = 0 N 1 x ( n ) x ( n m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOtaaaadaaeWbqaaiaadIhacaGGOaGaamOBaiaacMcacaWG4bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaWcbaGaam4Aaiabg2da9iaaicdaaeaacaWGobGaeyOeI0IaaGymaaqdcqGHris5aaaa@4DB1@

The two correlations also have a period of N samples.

Now let’s look at an application. The signal y(n) arrving at the receiver consists of the transmitted signal x(n) and adding noise z(n) :

y ( n ) = x ( n ) + z ( n ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadMhacaGGOaGaamOBaiaacMcacqGH9aqpcaWG4bGaaiikaiaad6gacaGGPaGaey4kaSIaamOEaiaacIcacaWGUbGaaiykaaaa@41A3@

The auto-correlation of the received signal for a duration of M samples, M is much greater than N, is

R y y ( m ) = 1 M n = 0 M 1 y ( n ) y ( n m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaaWcbaGaamyEaiaadMhaaeqaaOGaaiikaiaad2gacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamytaaaadaaeWbqaaiaadMhacaGGOaGaamOBaiaacMcacaWG5bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaWcbaGaamOBaiabg2da9iaaicdaaeaacaWGnbGaeyOeI0IaaGymaaqdcqGHris5aaaa@4DB6@

On replacing the expression of y(n) into above auto-correlation, we obtain

R y y ( m ) = 1 M n = 0 M 1 [ x ( n ) + z ( n ) ] [ x ( n m ) + z ( n m ) ] = 1 M n = 0 M 1 x ( n ) x ( n m ) + 1 M n = 0 M 1 [ x ( n ) z ( n m ) + z ( n ) x ( n m ) ] + 1 M n = 0 M 1 z ( n ) x ( n m ) = R x x ( m ) + R x z ( m ) + R z x ( m ) + R z z ( m ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaqaaqaaaOabaeqabaGaamOuamaaBaaaleaacaWG5bGaamyEaaqabaGccaGGOaGaamyBaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGnbaaamaaqahabaWaamWaaeaacaWG4bGaaiikaiaad6gacaGGPaGaey4kaSIaamOEaiaacIcacaWGUbGaaiykaaGaay5waiaaw2faaaWcbaGaamOBaiabg2da9iaaicdaaeaacaWGnbGaeyOeI0IaaGymaaqdcqGHris5aOWaamWaaeaacaWG4bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaiabgUcaRiaadQhacaGGOaGaamOBaiabgkHiTiaad2gacaGGPaaacaGLBbGaayzxaaaabaaabaGaaGzbVlaaywW7caaMf8UaaGjbVlabg2da9maalaaabaGaaGymaaqaaiaad2eaaaWaaabCaeaacaWG4bGaaiikaiaad6gacaGGPaGaamiEaiaacIcacaWGUbGaeyOeI0IaamyBaiaacMcaaSqaaiaad6gacqGH9aqpcaaIWaaabaGaamytaiabgkHiTiaaigdaa0GaeyyeIuoakiabgUcaRmaalaaabaGaaGymaaqaaiaad2eaaaWaaabCaeaadaWadaqaaiaadIhacaGGOaGaamOBaiaacMcacaWG6bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaiabgUcaRiaadQhacaGGOaGaamOBaiaacMcacaWG4bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaGaay5waiaaw2faaaWcbaGaamOBaiabg2da9iaaicdaaeaacaWGnbGaeyOeI0IaaGymaaqdcqGHris5aOGaey4kaSYaaSaaaeaacaaIXaaabaGaamytaaaadaaeWbqaaiaadQhacaGGOaGaamOBaiaacMcacaWG4bGaaiikaiaad6gacqGHsislcaWGTbGaaiykaaWcbaGaamOBaiabg2da9iaaicdaaeaacaWGnbGaeyOeI0IaaGymaaqdcqGHris5aaGcbaaabaGaaGzbVlaaywW7caaMf8UaaGjbVlabg2da9iaadkfadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaiikaiaad2gacaGGPaGaey4kaSIaamOuamaaBaaaleaacaWG4bGaamOEaaqabaGccaGGOaGaamyBaiaacMcacqGHRaWkcaWGsbWaaSbaaSqaaiaadQhacaWG4baabeaakiaacIcacaWGTbGaaiykaiabgUcaRiaadkfadaWgaaWcbaGaamOEaiaadQhaaeqaaOGaaiikaiaad2gacaGGPaaaaaa@C3F9@

Because the signal x(n) is periodic with period N, the auto-correlation R xx size 12{R rSub { size 8{ ital "xx"} } } {} is also periodic with peaks at m = 0, N, 2N ... The cross-correlation R xz size 12{R rSub { size 8{ ital "xz"} } } {} (m) are Rzx(m) of the signal and noise are rather small because the signal and noise are uncorrelated. The last term Rzz(m) is the auto-correlation of noise, it has peak at m = 0 and decays fast to zero due to its random nature. Thus it remains R xx size 12{R rSub { size 8{ ital "xx"} } } {} the largest. This feature allows us to detect the periodic signal x(n) even if the adding noise has amplitude comparable to that of the signal or even much higher. This method of correlation has been used to determine the pitch (fundamental frequency) of voice and music buried in noise.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ece 454 and ece 554 supplemental reading. OpenStax CNX. Apr 02, 2012 Download for free at http://cnx.org/content/col11416/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ece 454 and ece 554 supplemental reading' conversation and receive update notifications?

Ask