<< Chapter < Page Chapter >> Page >
  • Convert from cylindrical to rectangular coordinates.
  • Convert from rectangular to cylindrical coordinates.
  • Convert from spherical to rectangular coordinates.
  • Convert from rectangular to spherical coordinates.

The Cartesian coordinate system provides a straightforward way to describe the location of points in space. Some surfaces, however, can be difficult to model with equations based on the Cartesian system. This is a familiar problem; recall that in two dimensions, polar coordinates often provide a useful alternative system for describing the location of a point in the plane, particularly in cases involving circles. In this section, we look at two different ways of describing the location of points in space, both of them based on extensions of polar coordinates. As the name suggests, cylindrical coordinates are useful for dealing with problems involving cylinders, such as calculating the volume of a round water tank or the amount of oil flowing through a pipe. Similarly, spherical coordinates are useful for dealing with problems involving spheres, such as finding the volume of domed structures.

Cylindrical coordinates

When we expanded the traditional Cartesian coordinate system from two dimensions to three, we simply added a new axis to model the third dimension. Starting with polar coordinates, we can follow this same process to create a new three-dimensional coordinate system, called the cylindrical coordinate system. In this way, cylindrical coordinates provide a natural extension of polar coordinates to three dimensions.

Definition

In the cylindrical coordinate system    , a point in space ( [link] ) is represented by the ordered triple ( r , θ , z ) , where

  • ( r , θ ) are the polar coordinates of the point’s projection in the xy -plane
  • z is the usual z -coordinate in the Cartesian coordinate system
This figure is the first octant of the 3-dimensional coordinate system. There is a point labeled “(x, y, z) = (r, theta, z).” In the x y-plane, there is a line segment extending to underneath the point. This line segment is labeled “r.” The angle between the line segment and the x-axis is theta. There is a line segment perpendicular to the x-axis. Along with the line segment labeled r, this line segment and the x-axis form a right triangle.
The right triangle lies in the xy -plane. The length of the hypotenuse is r and θ is the measure of the angle formed by the positive x -axis and the hypotenuse. The
z -coordinate describes the location of the point above or below the xy -plane.

In the xy -plane, the right triangle shown in [link] provides the key to transformation between cylindrical and Cartesian, or rectangular, coordinates.

Conversion between cylindrical and cartesian coordinates

The rectangular coordinates ( x , y , z ) and the cylindrical coordinates ( r , θ , z ) of a point are related as follows:

x = r cos θ These equations are used to convert from y = r sin θ cylindrical coordinates to rectangular z = z coordinates. and r 2 = x 2 + y 2 These equations are used to convert from tan θ = y x rectangular coordinates to cylindrical z = z coordinates.

As when we discussed conversion from rectangular coordinates to polar coordinates in two dimensions, it should be noted that the equation tan θ = y x has an infinite number of solutions. However, if we restrict θ to values between 0 and 2 π , then we can find a unique solution based on the quadrant of the xy -plane in which original point ( x , y , z ) is located. Note that if x = 0 , then the value of θ is either π 2 , 3 π 2 , or 0 , depending on the value of y .

Notice that these equations are derived from properties of right triangles. To make this easy to see, consider point P in the xy -plane with rectangular coordinates ( x , y , 0 ) and with cylindrical coordinates ( r , θ , 0 ) , as shown in the following figure.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask