<< Chapter < Page Chapter >> Page >

Shifting of graph parallel to x-axis

Each element of graph is shifted by same value.

Problem : Draw graph of function 4 y = 2 x .

Solution : Given function is exponential function. On simplification, we have :

y = 2 - 2 X 2 x = 2 x - 2

Here, core graph is y = 2 x . We draw its graph first and then shift the graph right by 2 units to get the graph of given function.

Shifting of exponential graph parallel to x-axis

Each element of graph is shifted by same value.

Note that the value of function at x=0 for core and modified functions, respectively, are :

y = 2 x = 2 0 = 1

y = 2 x - 2 = 2 - 2 = 1 4 = 0.25

Got questions? Get instant answers now!

Multiplication and division of independent variable

Let us consider an example of functions f(x) and f(2x). The integral values of independent variable are same as integral values on x-axis of coordinate system. Note that independent variable is plotted along x-axis as real number line. The integral 2x values to the function f(2x) - such that input values are same as that of f(x) - are shown on a separate line just below x-axis. The corresponding values are linked with arrow signs. Input to the function f(2x) which is same as that of f(x) now appears closer to origin by a factor of 2. It means graph of f(2x) is same as graph of f(x), which has been shrunk by a factor 2 towards origin. Else, we can say that x-axis has been stretched by a factor 2.

Multiplication of independent variable

The graph shrinks towards origin.

y = f x y = f b x ; | b | > 1

Let us consider another example of functions f(x) and f(x/2). The integral values of independent variable are same as integral values on x-axis of coordinate system. Note that independent variable is plotted along x-axis as real number line. The integral x/2 values to the function f(x/2) - such that input values are same as that of f(x) - are shown on a separate line just below x-axis. The corresponding values are linked with arrow signs. Input to the function f(x/2) which is same as that of f(x) now appears away from origin by a factor of 2. It means graph of f(x/2) is same as graph of f(x), which has been stretched by a factor 2 away from origin. Else, we can say that x-axis has been shrunk by a factor 2.

Multiplication of independent variable

The graph stretches away from origin.

y = f x y = f x b ; | b | > 1

Important thing to note about horizontal scaling (shrinking or stretching) is that it takes place with respect to origin of the coordinate system and along x-axis – not about any other point and not along y-axis. What it means that behavior of graph at x=0 remains unchanged. In equivalent term, we can say that y-intercept of graph remains same and is not affected by scaling resulting from multiplication or division of the independent variable.

Negation of independent variable

Let us consider an example of functions f(x) and f(-x). The integral values of independent variable are same as integral values on x-axis of coordinate system. Note that independent variable is plotted along x-axis as real number line. The integral -x values to the function f(-x) - such that input values are same as that of f(x) - are shown on a separate line just below x-axis. The corresponding values are linked with arrow signs. Input to the function f(-x) which is same as that of f(x) now appears to be flipped across y-axis. It means graph of f(-x) is same as graph of f(x), which is mirror image in y-axis i.e. across y-axis.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Kinematics fundamentals. OpenStax CNX. Sep 28, 2008 Download for free at http://cnx.org/content/col10348/1.29
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Kinematics fundamentals' conversation and receive update notifications?

Ask