<< Chapter < Page Chapter >> Page >

Another type of tube is one that is open at both ends. Examples are some organ pipes, flutes, and oboes. The resonances of tubes open at both ends can be analyzed in a very similar fashion to those for tubes closed at one end. The air columns in tubes open at both ends have maximum air displacements at both ends, as illustrated in [link] . Standing waves form as shown.

The resonant frequency waves in a tube open at both ends are shown. There are a set of four images. The first image shows a tube of length L marked fundamental having half a wave. The maxima of the vibrations are on both the open ends of the tube. The second image shows a tube of length L marked first over tone having a full wave. The maxima of the vibrations are on both the open ends of the tube. The third image shows a tube of length L marked second over tone having a full wave and a half. The maxima of the vibrations are on both the open ends of the tube. The fourth image shows a tube of length L marked third over tone having two full waves. The maxima of the vibrations are on both the open ends of the tube.
The resonant frequencies of a tube open at both ends are shown, including the fundamental and the first three overtones. In all cases the maximum air displacements occur at both ends of the tube, giving it different natural frequencies than a tube closed at one end.

Based on the fact that a tube open at both ends has maximum air displacements at both ends, and using [link] as a guide, we can see that the resonant frequencies of a tube open at both ends are:

f n = n v w 2 L , n = 1, 2, 3 ...,

where f 1 size 12{f rSub { size 8{1} } } {} is the fundamental, f 2 size 12{f rSub { size 8{2} } } {} is the first overtone, f 3 size 12{f rSub { size 8{3} } } {} is the second overtone, and so on. Note that a tube open at both ends has a fundamental frequency twice what it would have if closed at one end. It also has a different spectrum of overtones than a tube closed at one end. So if you had two tubes with the same fundamental frequency but one was open at both ends and the other was closed at one end, they would sound different when played because they have different overtones. Middle C, for example, would sound richer played on an open tube, because it has even multiples of the fundamental as well as odd. A closed tube has only odd multiples.

Real-world applications: resonance in everyday systems

Resonance occurs in many different systems, including strings, air columns, and atoms. Resonance is the driven or forced oscillation of a system at its natural frequency. At resonance, energy is transferred rapidly to the oscillating system, and the amplitude of its oscillations grows until the system can no longer be described by Hooke’s law. An example of this is the distorted sound intentionally produced in certain types of rock music.

Wind instruments use resonance in air columns to amplify tones made by lips or vibrating reeds. Other instruments also use air resonance in clever ways to amplify sound. [link] shows a violin and a guitar, both of which have sounding boxes but with different shapes, resulting in different overtone structures. The vibrating string creates a sound that resonates in the sounding box, greatly amplifying the sound and creating overtones that give the instrument its characteristic flavor. The more complex the shape of the sounding box, the greater its ability to resonate over a wide range of frequencies. The marimba, like the one shown in [link] uses pots or gourds below the wooden slats to amplify their tones. The resonance of the pot can be adjusted by adding water.

First photograph is of a person playing the guitar and the second photograph is of a violin.
String instruments such as violins and guitars use resonance in their sounding boxes to amplify and enrich the sound created by their vibrating strings. The bridge and supports couple the string vibrations to the sounding boxes and air within. (credits: guitar, Feliciano Guimares, Fotopedia; violin, Steve Snodgrass, Flickr)
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic physics for medical imaging. OpenStax CNX. Feb 17, 2014 Download for free at http://legacy.cnx.org/content/col11630/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic physics for medical imaging' conversation and receive update notifications?

Ask