<< Chapter < Page Chapter >> Page >
This module will introduce rational functions and describe some of their properties. In particular, it will discuss how rational functions relate to the z-transform and provide a useful tool for characterizing LTI systems.

Introduction

When dealing with operations on polynomials, the term rational function is a simple way to describe a particular relationship between two polynomials.

rational function
For any two polynomials, A and B, their quotient is called a rational function.

If you have begun to study the Z-transform , you should have noticed by now they are all rational functions.Below we will look at some of the properties of rational functions and how they can be used to reveal importantcharacteristics about a z-transform, and thus a signal or LTI system.

Properties of rational functions

In order to see what makes rational functions special, let us look at some of their basic properties and characteristics.If you are familiar with rational functions and basic algebraic properties, skip to the next section to see how rational functions are useful when dealing with the z-transform.

Roots

To understand many of the following characteristics of a rational function, one must begin by finding the roots ofthe rational function. In order to do this, let us factor both of the polynomials so that the roots can be easily determined.Like all polynomials, the roots will provide us with information on many key properties. The function belowshows the results of factoring the above rational function, [link] .

f x x 2 x 2 2 x 3 x 1

Thus, the roots of the rational function are as follows:

Roots of the numerator are: -2 2

Roots of the denominator are: -3 1

In order to understand rational functions, it is essential to know and understand the roots that make up the rationalfunction.

Discontinuities

Because we are dealing with division of two polynomials, we must be aware of the values of the variable that will causethe denominator of our fraction to be zero. When this happens, the rational function becomes undefined, i.e. we have a discontinuity in thefunction. Because we have already solved for our roots, it is very easy to see when this occurs. When the variable inthe denominator equals any of the roots of the denominator, the function becomes undefined.

Continuing to look at our rational function above, [link] , we can see that the function will have discontinuities at the followingpoints: x -3 1

In respect to the Cartesian plane, we say that the discontinuities are the values along the x-axis where thefunction is undefined. These discontinuities often appear as vertical asymptotes on the graph to represent the values where the function is undefined.

Domain

Using the roots that we found above, the domain of the rational function can be easily defined.

domain
The group, or set, of values that are defined by a given function.

Intercepts

The x-intercept is defined as the point(s) where f x , i.e. the output of the rational functions, equals zero. Because we have alreadyfound the roots of the equation this process is very simple. From algebra, we know that the output will be zero wheneverthe numerator of the rational function is equal to zero. Therefore, the function will have an x-intercept wherever x equals one of the roots of the numerator.

The y-intercept occurs whenever x equals zero. This can be found by setting all the values of x equal to zero and solving the rational function.

Rational functions and the z-transform

As we have stated above, all z-transforms can be written as rational functions, which have become the most common way ofrepresenting the z-transform. Because of this, we can use the properties above, especially those of the roots, in order toreveal certain characteristics about the signal or LTI system described by the z-transform.

Below is the general form of the z-transform written as a rational function:

X z b 0 b 1 z -1 b M z M a 0 a 1 z -1 a N z N
If you have already looked at the module about Understanding Pole/Zero Plots and the Z-transform , you should see how the roots of the rational function play an important role in understanding thez-transform. The equation above, [link] , can be expressed in factored form just as was done for the simple rational function above, see [link] . Thus, we can easily find the roots of the numerator and denominator of thez-transform. The following two relationships become apparent:

    Relationship of roots to poles and zeros

  • The roots of the numerator in the rational function will be the zeros of the z-transform
  • The roots of the denominator in the rational function will be the poles of the z-transform

Conclusion

Once we have used our knowledge of rational functions to find its roots, we can manipulate a z-transform in a number of usefulways. We can apply this knowledge to representing an LTI system graphically through a Pole/Zero Plot , or to analyze and design a digital filter through Filter Design from the Z-Transform .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Pdf generation problem modules. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10514/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Pdf generation problem modules' conversation and receive update notifications?

Ask