<< Chapter < Page Chapter >> Page >
  • Determine the mass of a one-dimensional object from its linear density function.
  • Determine the mass of a two-dimensional circular object from its radial density function.
  • Calculate the work done by a variable force acting along a line.
  • Calculate the work done in pumping a liquid from one height to another.
  • Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a density function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and density

We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod or wire. Orient the rod so it aligns with the x -axis, with the left end of the rod at x = a and the right end of the rod at x = b ( [link] ). Note that although we depict the rod with some thickness in the figures, for mathematical purposes we assume the rod is thin enough to be treated as a one-dimensional object.

This figure has the x and y axes. On the x-axis is a cylinder, beginning at x=a and ending at x=b.
We can calculate the mass of a thin rod oriented along the x -axis by integrating its density function.

If the rod has constant density ρ , given in terms of mass per unit length, then the mass of the rod is just the product of the density and the length of the rod: ( b a ) ρ . If the density of the rod is not constant, however, the problem becomes a little more challenging. When the density of the rod varies from point to point, we use a linear density function    , ρ ( x ) , to denote the density of the rod at any point, x . Let ρ ( x ) be an integrable linear density function. Now, for i = 0 , 1 , 2 ,… , n let P = { x i } be a regular partition of the interval [ a , b ] , and for i = 1 , 2 ,… , n choose an arbitrary point x i * [ x i 1 , x i ] . [link] shows a representative segment of the rod.

This figure has the x and y axes. On the x-axis is a cylinder, beginning at x=a and ending at x=b. The cylinder has been divided into segments. One segment in the middle begins at xsub(i-1) and ends at xsubi.
A representative segment of the rod.

The mass m i of the segment of the rod from x i 1 to x i is approximated by

m i ρ ( x i * ) ( x i x i 1 ) = ρ ( x i * ) Δ x .

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:

m = i = 1 n m i i = 1 n ρ ( x i * ) Δ x .

This is a Riemann sum. Taking the limit as n , we get an expression for the exact mass of the rod:

m = lim n i = 1 n ρ ( x i * ) Δ x = a b ρ ( x ) d x .

We state this result in the following theorem.

Mass–density formula of a one-dimensional object

Given a thin rod oriented along the x -axis over the interval [ a , b ] , let ρ ( x ) denote a linear density function giving the density of the rod at a point x in the interval. Then the mass of the rod is given by

m = a b ρ ( x ) d x .

We apply this theorem in the next example.

Calculating mass from linear density

Consider a thin rod oriented on the x -axis over the interval [ π / 2 , π ] . If the density of the rod is given by ρ ( x ) = sin x , what is the mass of the rod?

Applying [link] directly, we have

m = a b ρ ( x ) d x = π / 2 π sin x d x = cos x | π / 2 π = 1 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Consider a thin rod oriented on the x -axis over the interval [ 1 , 3 ] . If the density of the rod is given by ρ ( x ) = 2 x 2 + 3 , what is the mass of the rod?

70 / 3

Got questions? Get instant answers now!

We now extend this concept to find the mass of a two-dimensional disk of radius r . As with the rod we looked at in the one-dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a two-dimensional object. We assume the density is given in terms of mass per unit area (called area density ), and further assume the density varies only along the disk’s radius (called radial density ). We orient the disk in the x y -plane, with the center at the origin. Then, the density of the disk can be treated as a function of x , denoted ρ ( x ) . We assume ρ ( x ) is integrable. Because density is a function of x , we partition the interval from [ 0 , r ] along the x -axis . For i = 0 , 1 , 2 ,… , n , let P = { x i } be a regular partition of the interval [ 0 , r ] , and for i = 1 , 2 ,… , n , choose an arbitrary point x i * [ x i 1 , x i ] . Now, use the partition to break up the disk into thin (two-dimensional) washers. A disk and a representative washer are depicted in the following figure.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?

Ask