<< Chapter < Page Chapter >> Page >

Try it

The following data show the number of months patients typically wait on a transplant list before getting surgery. The data are ordered from smallest to largest. Calculate the mean and median.

  • 3
  • 4
  • 5
  • 7
  • 7
  • 7
  • 7
  • 8
  • 8
  • 9
  • 9
  • 10
  • 10
  • 10
  • 10
  • 10
  • 11
  • 12
  • 12
  • 13
  • 14
  • 14
  • 15
  • 15
  • 17
  • 17
  • 18
  • 19
  • 19
  • 19
  • 21
  • 21
  • 22
  • 22
  • 23
  • 24
  • 24
  • 24
  • 24

Mean: 3 + 4 + 5 + 7 + 7 + 7 + 7 + 8 + 8 + 9 + 9 + 10 + 10 + 10 + 10 + 10 + 11 + 12 + 12 + 13 + 14 + 14 + 15 + 15 + 17 + 17 + 18 + 19 + 19 + 19 + 21 + 21 + 22 + 22 + 23 + 24 + 24 + 24 = 544
544 39  = 13 .95
Median: Starting at the smallest value, the median is the 20th term, which is 13.

Suppose that in a small town of 50 people, one person earns $5,000,000 per year and the other 49 each earn $30,000. Which is the better measure of the "center": the mean or the median?

x ¯ = 5 , 000 , 000 + 49 ( 30 , 000 ) 50 = 129,400

M = 30,000

(There are 49 people who earn $30,000 and one person who earns $5,000,000.)

The median is a better measure of the "center" than the mean because 49 of the values are 30,000 and one is 5,000,000. The 5,000,000 is an outlier. The 30,000 gives us a better sense of the middle of the data.

Try it

In a sample of 60 households, one house is worth $2,500,000. Half of the rest are worth $280,000, and all the others are worth $315,000. Which is the better measure of the “center”: the mean or the median?

The median is the better measure of the “center” than the mean because 59 of the values are $280,000 and one is $2,500,000. The $2,500,000 is an outlier. Either $280,000 or $315,000 gives us a better sense of the middle of the data.

Another measure of the center is the mode. The mode is the most frequent value. There can be more than one mode in a data set as long as those values have the same frequency and that frequency is the highest. A data set with two modes is called bimodal.

Statistics exam scores for 20 students are as follows:

  • 50
  • 53
  • 59
  • 59
  • 63
  • 63
  • 72
  • 72
  • 72
  • 72
  • 72
  • 76
  • 78
  • 81
  • 83
  • 84
  • 84
  • 84
  • 90
  • 93

Find the mode.

The most frequent score is 72, which occurs five times. Mode = 72.

Try it

The number of books checked out from the library from 25 students are as follows:

  • 0
  • 0
  • 0
  • 1
  • 2
  • 3
  • 3
  • 4
  • 4
  • 5
  • 5
  • 7
  • 7
  • 7
  • 7
  • 8
  • 8
  • 8
  • 9
  • 10
  • 10
  • 11
  • 11
  • 12
  • 12

Find the mode.

The most frequent number of books is 7, which occurs four times. Mode = 7.

Five real estate exam scores are 430, 430, 480, 480, 495. The data set is bimodal because the scores 430 and 480 each occur twice.

When is the mode the best measure of the "center"? Consider a weight loss program that advertises a mean weight loss of six pounds the first week of the program. The mode might indicate that most people lose two pounds the first week, making the program less appealing.

Note

The mode can be calculated for qualitative data as well as for quantitative data. For example, if the data set is: red, red, red, green, green, yellow, purple, black, blue, the mode is red.

Statistical software will easily calculate the mean, the median, and the mode. Some graphing calculators can also make these calculations. In the real world, people make these calculations using software.

Try it

Five credit scores are 680, 680, 700, 720, 720. The data set is bimodal because the scores 680 and 720 each occur twice. Consider the annual earnings of workers at a factory. The mode is $25,000 and occurs 150 times out of 301. The median is $50,000 and the mean is $47,500. What would be the best measure of the “center”?

Because $25,000 occurs nearly half the time, the mode would be the best measure of the center because the median and mean don’t represent what most people make at the factory.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Statistics i - math1020 - red river college - version 2015 revision a - draft 2015-10-24. OpenStax CNX. Oct 24, 2015 Download for free at http://legacy.cnx.org/content/col11891/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistics i - math1020 - red river college - version 2015 revision a - draft 2015-10-24' conversation and receive update notifications?

Ask