<< Chapter < Page Chapter >> Page >

Solution

1. Identify the knowns. y 0 = 0 ; y 1 = 5 . 10 m ; v 0 = 13 .0 m/s ; a = g = 9 . 80 m /s 2 size 12{a= - g= - 9 "." "80"" m/s" rSup { size 8{2} } } {} .

2. Choose the kinematic equation that makes it easiest to solve the problem. The equation v 2 = v 0 2 + 2 a ( y y 0 ) works well because the only unknown in it is v . (We will plug y 1 in for y .)

3. Enter the known values

v 2 = 13 . 0 m/s 2 + 2 9 . 80 m/s 2 5 . 10 m 0 m = 268 . 96 m 2 /s 2 , size 12{v rSup { size 8{2} } = left ( - "13" "." "0 m/s" right ) rSup { size 8{2} } +2 left ( - 9 "." "80 m/s" rSup { size 8{2} } right ) left ( - 5 "." "10 m" - "0 m" right )="268" "." "96 m" rSup { size 8{2} } "/s" rSup { size 8{2} } } {}

where we have retained extra significant figures because this is an intermediate result.

Taking the square root, and noting that a square root can be positive or negative, gives

v = ± 16 .4 m/s .

The negative root is chosen to indicate that the rock is still heading down. Thus,

v = 16 .4 m/s . size 12{v= - "16" "." 4`"m/s"} {}

Discussion

Note that this is exactly the same velocity the rock had at this position when it was thrown straight upward with the same initial speed . (See [link] and [link] (a).) This is not a coincidental result. Because we only consider the acceleration due to gravity in this problem, the speed of a falling object depends only on its initial speed and its vertical position relative to the starting point. For example, if the velocity of the rock is calculated at a height of 8.10 m above the starting point (using the method from [link] ) when the initial velocity is 13.0 m/s straight up, a result of ± 3 . 20 m/s size 12{ +- 3 "." "20"`"m/s"} {} is obtained. Here both signs are meaningful; the positive value occurs when the rock is at 8.10 m and heading up, and the negative value occurs when the rock is at 8.10 m and heading back down. It has the same speed but the opposite direction.

Two figures are shown. At left, a man standing on the edge of a cliff throws a rock straight up with an initial speed of thirteen meters per second. At right, the man throws the rock straight down with a speed of thirteen meters per second. In both figures, a line indicates the rock’s trajectory. When the rock is thrown straight up, it has a speed of minus sixteen point four meters per second at minus five point one zero meters below the point where the man released the rock. When the rock is thrown straight down, the velocity is the same at this position.
(a) A person throws a rock straight up, as explored in [link] . The arrows are velocity vectors at 0, 1.00, 2.00, and 3.00 s. (b) A person throws a rock straight down from a cliff with the same initial speed as before, as in [link] . Note that at the same distance below the point of release, the rock has the same velocity in both cases.

Another way to look at it is this: In [link] , the rock is thrown up with an initial velocity of 13 .0 m/s . It rises and then falls back down. When its position is y = 0 on its way back down, its velocity is 13 .0 m/s . That is, it has the same speed on its way down as on its way up. We would then expect its velocity at a position of y = 5 . 10 m to be the same whether we have thrown it upwards at + 13 .0 m/s or thrown it downwards at 13 .0 m/s . The velocity of the rock on its way down from y = 0 is the same whether we have thrown it up or down to start with, as long as the speed with which it was initially thrown is the same.

Find g From data on a falling object

The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are on a hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt beneath you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics laboratory course. An object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall a known distance is measured. See, for example, [link] . Very precise results can be produced with this method if sufficient care is taken in measuring the distance fallen and the elapsed time.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics subject knowledge enhancement course (ske). OpenStax CNX. Jan 09, 2015 Download for free at http://legacy.cnx.org/content/col11505/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics subject knowledge enhancement course (ske)' conversation and receive update notifications?

Ask