<< Chapter < Page | Chapter >> Page > |
and
and the rest of the method outlined above is identical to that for addition. (See [link] .)
Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular quantities are often independent of one another. The next module, Projectile Motion , is one of many in which using perpendicular components helps make the picture clear and simplifies the physics.
Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The magnitude, angle, and components of each vector can be displayed in several formats.
Step 1: Determine the coordinate system for the vectors. Then, determine the horizontal and vertical components of each vector using the equations
and
Step 2: Add the horizontal and vertical components of each vector to determine the components and of the resultant vector, :
and
Step 3: Use the Pythagorean theorem to determine the magnitude, , of the resultant vector :
Step 4: Use a trigonometric identity to determine the direction, , of :
Suppose you add two vectors and . What relative direction between them produces the resultant with the greatest magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the smallest magnitude? What is the minimum magnitude?
Give an example of a nonzero vector that has a component of zero.
Explain why a vector cannot have a component greater than its own magnitude.
If the vectors and are perpendicular, what is the component of along the direction of ? What is the component of along the direction of ?
Find the following for path C in [link] : (a) the total distance traveled and (b) the magnitude and direction of the displacement from start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.
(a) 1.56 km
(b) 120 m east
Find the following for path D in [link] : (a) the total distance traveled and (b) the magnitude and direction of the displacement from start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.
Find the north and east components of the displacement from San Francisco to Sacramento shown in [link] .
North-component 87.0 km, east-component 87.0 km
Notification Switch
Would you like to follow the 'Sample chapters: openstax college physics for ap® courses' conversation and receive update notifications?