<< Chapter < Page Chapter >> Page >
Δ E = E final E initial = −2.18 × 10 −18 ( 1 n f 2 1 n i 2 ) J

The values n f and n i are the final and initial energy states of the electron. [link] in the previous section of the chapter demonstrates calculations of such energy changes.

The principal quantum number is one of three quantum numbers used to characterize an orbital. An atomic orbital    , which is distinct from an orbit , is a general region in an atom within which an electron is most probable to reside. The quantum mechanical model specifies the probability of finding an electron in the three-dimensional space around the nucleus and is based on solutions of the Schrödinger equation. In addition, the principle quantum number defines the energy of an electron in a hydrogen or hydrogen-like atom or an ion (an atom or an ion with only one electron) and the general region in which discrete energy levels of electrons in a multi-electron atoms and ions are located.

Another quantum number is l , the angular momentum quantum number . It is an integer that defines the shape of the orbital, and takes on the values, l = 0, 1, 2, …, n – 1. This means that an orbital with n = 1 can have only one value of l , l = 0, whereas n = 2 permits l = 0 and l = 1, and so on. The principal quantum number defines the general size and energy of the orbital. The l value specifies the shape of the orbital. Orbitals with the same value of l form a subshell    . In addition, the greater the angular momentum quantum number, the greater is the angular momentum of an electron at this orbital.

Orbitals with l = 0 are called s orbitals (or the s subshells). The value l = 1 corresponds to the p orbitals. For a given n , p orbitals constitute a p subshell (e.g., 3 p if n = 3). The orbitals with l = 2 are called the d orbitals , followed by the f-, g-, and h- orbitals for l = 3, 4, 5, and there are higher values we will not consider.

There are certain distances from the nucleus at which the probability density of finding an electron located at a particular orbital is zero. In other words, the value of the wavefunction ψ is zero at this distance for this orbital. Such a value of radius r is called a radial node. The number of radial nodes in an orbital is n l – 1.

This figure provides images and graphs to illustrate the probability of finding an electron in 1 s, 2 s, and 3 s orbitals as a function of the distance from the nucleus. The 1 s orbital is shown as a sphere with a chunk missing. Below it, a graph is marked on its horizontal axis at 0 and 50 p m. The related curve quickly reaches a maximum height and rapidly declines. The label, “1 s” appears below the graph. The 2 s orbital is shown as a red sphere with a blue middle. A chunk is missing from the sphere. A graph below it is marked on its horizontal axis at 0, 50, and 100 p m. The related curve quickly reaches a relative maximum height, a significantly higher absolute maximum height, and then rapidly declines. The label “2s” appears below it. The 3 s orbital is a blue sphere with a red sphere and another blue sphere at its core. A graph below it is marked on its horizontal axis at 0, 50, 100, and 150 p m. The related curve quickly reaches a relative maximum height, a second relative maximum height, a significantly higher absolute maximum, and then declines more gradually than illustrated in the previous 2 graphs. The label, “3 s,” appears below the graph.
The graphs show the probability ( y axis) of finding an electron for the 1 s , 2 s , 3 s orbitals as a function of distance from the nucleus.

Consider the examples in [link] . The orbitals depicted are of the s type, thus l = 0 for all of them. It can be seen from the graphs of the probability densities that there are 1 – 0 – 1 = 0 places where the density is zero (nodes) for 1 s ( n = 1), 2 – 0 – 1 = 1 node for 2 s , and 3 – 0 – 1 = 2 nodes for the 3 s orbitals.

The s subshell electron density distribution is spherical and the p subshell has a dumbbell shape. The d and f orbitals are more complex. These shapes represent the three-dimensional regions within which the electron is likely to be found.

This diagram illustrates the shapes and quantities of all s, p, d, and f orbitals. The s sublevel is composed of a single spherical orbital. The p sublevel is composed of 3 dumbbell shaped orbitals oriented along the x, y, and z axes. The five d sublevels and seven f sublevels are considerably more complex.
Shapes of s , p , d , and f orbitals.

If an electron has an angular momentum ( l ≠ 0), then this vector can point in different directions. In addition, the z component of the angular momentum can have more than one value. This means that if a magnetic field is applied in the z direction, orbitals with different values of the z component of the angular momentum will have different energies resulting from interacting with the field. The magnetic quantum number , called m l, specifies the z component of the angular momentum for a particular orbital. For example, for an s orbital, l = 0, and the only value of m l is zero. For p orbitals, l = 1, and m l can be equal to –1, 0, or +1. Generally speaking, m l can be equal to – l , –( l – 1), …, –1, 0, +1, …, ( l – 1), l . The total number of possible orbitals with the same value of l (a subshell) is 2 l + 1. Thus, there is one s -orbital for ml = 0 , there are three p -orbitals for ml = 1 , five d -orbitals for ml = 2 , seven f -orbitals for ml = 3 , and so forth. The principle quantum number defines the general value of the electronic energy. The angular momentum quantum number determines the shape of the orbital. And the magnetic quantum number specifies orientation of the orbital in space, as can be seen in [link] .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask