<< Chapter < Page Chapter >> Page >

The third quartile , Q 3, is nine. Three-fourths (75%) of the ordered data set are less than nine. One-fourth (25%) of the ordered data set are greater than nine. The third quartile is part of the data set in this example.

The interquartile range is a number that indicates the spread of the middle half or the middle 50% of the data. It is the difference between the third quartile ( Q 3 ) and the first quartile ( Q 1 ).

IQR = Q 3 Q 1

The IQR can help to determine potential outliers . A value is suspected to be a potential outlier if it is less than (1.5)( IQR ) below the first quartile or more than (1.5)( IQR ) above the third quartile . Potential outliers always require further investigation.

Note

A potential outlier is a data point that is significantly different from the other data points. These special data points may be errors or some kind of abnormality or they may be a key to understanding the data.

For the following 13 real estate prices, calculate the IQR and determine if any prices are potential outliers. Prices are in dollars.
389,950; 230,500; 158,000; 479,000; 639,000; 114,950; 5,500,000; 387,000; 659,000; 529,000; 575,000; 488,800; 1,095,000

Order the data from smallest to largest.
114,950; 158,000; 230,500; 387,000; 389,950; 479,000; 488,800; 529,000; 575,000; 639,000; 659,000; 1,095,000; 5,500,000

M = 488,800

Q 1 = 230,500 + 387,000 2 = 308,750

Q 3 = 639,000 + 659,000 2 = 649,000

IQR = 649,000 – 308,750 = 340,250

(1.5)( IQR ) = (1.5)(340,250) = 510,375

Q 1 – (1.5)( IQR ) = 308,750 – 510,375 = –201,625

Q 3 + (1.5)( IQR ) = 649,000 + 510,375 = 1,159,375

No house price is less than –201,625. However, 5,500,000 is more than 1,159,375. Therefore, 5,500,000 is a potential outlier .

For the two data sets in the test scores example , find the following:

  1. The interquartile range. Compare the two interquartile ranges.
  2. Any outliers in either set.

The five number summary for the day and night classes is

Minimum Q 1 Median Q 3 Maximum
Day 32 56 74.5 82.5 99
Night 25.5 78 81 89 98
  1. The IQR for the day group is Q 3 Q 1 = 82.5 – 56 = 26.5

    The IQR for the night group is Q 3 Q 1 = 89 – 78 = 11

    The interquartile range (the spread or variability) for the day class is larger than the night class IQR . This suggests more variation will be found in the day class’s class test scores.

  2. Day class outliers are found using the IQR times 1.5 rule. So,
    • Q 1 - IQR (1.5) = 56 – 26.5(1.5) = 16.25
    • Q 3 + IQR (1.5) = 82.5 + 26.5(1.5) = 122.25

    Since the minimum and maximum values for the day class are greater than 16.25 and less than 122.25, there are no outliers.

    Night class outliers are calculated as:

    • Q 1 IQR (1.5) = 78 – 11(1.5) = 61.5
    • Q 3 + IQR(1.5) = 89 + 11(1.5) = 105.5

    For this class, any test score less than 61.5 is an outlier. Therefore, the scores of 45 and 25.5 are outliers. Since no test score is greater than 105.5, there is no upper end outlier.

Fifty statistics students were asked how much sleep they get per school night (rounded to the nearest hour). The results were:

AMOUNT OF SLEEP PER SCHOOL NIGHT (HOURS) FREQUENCY RELATIVE FREQUENCY CUMULATIVE RELATIVE FREQUENCY
4 2 0.04 0.04
5 5 0.10 0.14
6 7 0.14 0.28
7 12 0.24 0.52
8 14 0.28 0.80
9 7 0.14 0.94
10 3 0.06 1.00

Find the 28 th percentile . Notice the 0.28 in the "cumulative relative frequency" column. Twenty-eight percent of 50 data values is 14 values. There are 14 values less than the 28 th percentile. They include the two 4s, the five 5s, and the seven 6s. The 28 th percentile is between the last six and the first seven. The 28 th percentile is 6.5.

Find the median . Look again at the "cumulative relative frequency" column and find 0.52. The median is the 50 th percentile or the second quartile. 50% of 50 is 25. There are 25 values less than the median. They include the two 4s, the five 5s, the seven 6s, and eleven of the 7s. The median or 50 th percentile is between the 25 th , or seven, and 26 th , or seven, values. The median is seven.

Find the third quartile . The third quartile is the same as the 75 th percentile. You can "eyeball" this answer. If you look at the "cumulative relative frequency" column, you find 0.52 and 0.80. When you have all the fours, fives, sixes and sevens, you have 52% of the data. When you include all the 8s, you have 80% of the data. The 75 th percentile, then, must be an eight . Another way to look at the problem is to find 75% of 50, which is 37.5, and round up to 38. The third quartile, Q 3 , is the 38 th value, which is an eight. You can check this answer by counting the values. (There are 37 values below the third quartile and 12 values above.)

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. Aug 09, 2016 Download for free at http://legacy.cnx.org/content/col11776/1.26
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask