<< Chapter < Page | Chapter >> Page > |
Modify the script
Modify the code in your script to initialize the value of the variable named angInc to 45 degrees instead of 90 degrees and then load the revised version into your browser. This will cause thescript to fill in data points between the points that we already have producing the output shown in Figure 16 .
Figure 12 . Sinusoidal values at 45-degree increments. |
---|
Angle: -360 Sine: 0 Cosine: 1
Angle: -315 Sine: 0.71 Cosine: 0.71Angle: -270 Sine: 1 Cosine: 0
Angle: -225 Sine: 0.71 Cosine: -0.71Angle: -180 Sine: 0 Cosine: -1
Angle: -135 Sine: -0.71 Cosine: -0.71Angle: -90 Sine: -1 Cosine: 0
Angle: -45 Sine: -0.71 Cosine: 0.71Angle: 0 Sine: 0 Cosine: 1
Angle: 45 Sine: 0.71 Cosine: 0.71Angle: 90 Sine: 1 Cosine: 0
Angle: 135 Sine: 0.71 Cosine: -0.71Angle: 180 Sine: 0 Cosine: -1
Angle: 225 Sine: -0.71 Cosine: -0.71Angle: 270 Sine: -1 Cosine: 0
Angle: 315 Sine: -0.71 Cosine: 0.71Angle: 360 Sine: 0 Cosine: 1 |
Plot the new points
Every other line of text in Figure 12 should contain sine and cosine values for angles that are half way between the points that you already have plotted.
Plot the new points and connect all of the points in each curve.
Same shape but shifted horizontally
The two curves still have the same shape, although shifted horizontally relative to one another and they are still periodic. However, they no longerhave a saw tooth shape. They tend to be a little more rounded near the peaks and they are beginning to provide a better representation of the actual shapes ofthe sine and cosine curves.
Let's do it again
Change the value of the variable named angInc from 45 degrees to22.5 degrees and load the new version of the html file into your browser. Now the output should look like Figure 13 .
Figure 13 . Sinusoidal values at 22.5-degree increments. |
---|
Angle: -360 Sine: 0 Cosine: 1
Angle: -337.5 Sine: 0.38 Cosine: 0.92Angle: -315 Sine: 0.71 Cosine: 0.71
Angle: -292.5 Sine: 0.92 Cosine: 0.38Angle: -270 Sine: 1 Cosine: 0
Angle: -247.5 Sine: 0.92 Cosine: -0.38Angle: -225 Sine: 0.71 Cosine: -0.71
Angle: -202.5 Sine: 0.38 Cosine: -0.92Angle: -180 Sine: 0 Cosine: -1
Angle: -157.5 Sine: -0.38 Cosine: -0.92Angle: -135 Sine: -0.71 Cosine: -0.71
Angle: -112.5 Sine: -0.92 Cosine: -0.38Angle: -90 Sine: -1 Cosine: 0
Angle: -67.5 Sine: -0.92 Cosine: 0.38Angle: -45 Sine: -0.71 Cosine: 0.71
Angle: -22.5 Sine: -0.38 Cosine: 0.92Angle: 0 Sine: 0 Cosine: 1
Angle: 22.5 Sine: 0.38 Cosine: 0.92Angle: 45 Sine: 0.71 Cosine: 0.71
Angle: 67.5 Sine: 0.92 Cosine: 0.38Angle: 90 Sine: 1 Cosine: 0
Angle: 112.5 Sine: 0.92 Cosine: -0.38Angle: 135 Sine: 0.71 Cosine: -0.71
Angle: 157.5 Sine: 0.38 Cosine: -0.92Angle: 180 Sine: 0 Cosine: -1
Angle: 202.5 Sine: -0.38 Cosine: -0.92Angle: 225 Sine: -0.71 Cosine: -0.71
Angle: 247.5 Sine: -0.92 Cosine: -0.38Angle: 270 Sine: -1 Cosine: 0
Angle: 292.5 Sine: -0.92 Cosine: 0.38Angle: 315 Sine: -0.71 Cosine: 0.71
Angle: 337.5 Sine: -0.38 Cosine: 0.92Angle: 360 Sine: 0 Cosine: 1 |
A lot of data points
Once again, every other line of text in Figure 13 contains new sine and cosine values for angles that you don't have plotted yet.
Notification Switch
Would you like to follow the 'Game 2302 - mathematical applications for game development' conversation and receive update notifications?