<< Chapter < Page | Chapter >> Page > |
Card 15 / 33:
Describe the process that results in the formation of a tetrad.
During the meiotic interphase, each chromosome is duplicated. The sister chromatids that are formed during synthesis are held together at the centromere region by cohesin proteins. All chromosomes are attached to the nuclear envelope by their tips. As the cell enters prophase I, the nuclear envelope begins to fragment, and the proteins holding homologous chromosomes locate each other. The four sister chromatids align lengthwise, and a protein lattice called the synaptonemal complex is formed between them to bind them together. The synaptonemal complex facilitates crossover between non-sister chromatids, which is observed as chiasmata along the length of the chromosome. As prophase I progresses, the synaptonemal complex breaks down and the sister chromatids become free, except where they are attached by chiasmata. At this stage, the four chromatids are visible in each homologous pairing and are called a tetrad.
Previous Card | ← Previous Card Button |
Next Card | → Next Card Button |
Flip Card | ↑ / ↓ / Return / Space |
Notification Switch
Would you like to follow the 'Open genetics' conversation and receive update notifications?