<< Chapter < Page Chapter >> Page >

Introduction

In this module some of the basic classifications of systems will be briefly introduced and the most important propertiesof these systems are explained. As can be seen, the properties of a system provide an easy way to separate onesystem from another. Understanding these basic difference's between systems, and their properties, will be a fundamentalconcept used in all signal and system courses, such as digital signal processing (DSP). Once a set of systems can beidentified as sharing particular properties, one no longer has to deal with proving a certain characteristic of a system eachtime, but it can simply be accepted do the systems classification. Also remember that this classificationpresented here is neither exclusive (systems can belong to several different classifications) nor is it unique.

Classification of systems

Along with the classification of systems below, it is also important to understand other Classification of Signals .

Continuous vs. discrete

This may be the simplest classification to understand as the idea of discrete-time and continuous-time is one of the mostfundamental properties to all of signals and system. A system where the input and output signals are continuous is a continuous system , and one where the input and output signals are discrete is a discrete system .

Linear vs. nonlinear

A linear system is any system that obeys the properties of scaling (homogeneity) and superposition(additivity), while a nonlinear system is any system that does not obey at least one of these.

To show that a system H obeys the scaling property is to show that

H k f t k H f t

A block diagram demonstrating the scaling property of linearity

To demonstrate that a system H obeys the superposition property of linearity is to show that

H f 1 t f 2 t H f 1 t H f 2 t

A block diagram demonstrating the superposition property oflinearity

It is possible to check a system for linearity in a single (though larger) step. To do this, simply combine the firsttwo steps to get

H k 1 f 1 t k 2 f 2 t k 2 H f 1 t k 2 H f 2 t

Time invariant vs. time variant

A time invariant system is one that does not depend on when it occurs: the shape of the output does notchange with a delay of the input. That is to say that for a system H where H f t y t , H is time invariant if for all T

H f t T y t T

This block diagram shows what the condition for time invariance. The output is the same whether the delay is puton the input or the output.

When this property does not hold for a system, then it is said to be time variant , or time-varying.

Causal vs. noncausal

A causal system is one that is nonanticipative ; that is, the output may depend on current and past inputs, but not future inputs. All"realtime" systems must be causal, since they can not have future inputs available to them.

One may think the idea of future inputs does not seem to make much physical sense; however, we have only beendealing with time as our dependent variable so far, which is not always the case. Imagine rather that we wanted to doimage processing. Then the dependent variable might represent pixels to the left and right (the "future") of the currentposition on the image, and we would have a noncausal system.

For a typical system to be causal...
...the output at time t 0 , y t 0 , can only depend on the portion of the input signal before t 0 .

Stable vs. unstable

A stable system is one where the output does not diverge as long as the input does not diverge. Thereare many ways to say that a signal "diverges"; for example it could have infinite energy. One particularly usefuldefinition of divergence relates to whether the signal is bounded or not. Then a system is referred to as bounded input-bounded output (BIBO) stable if every possible bounded input produces a bounded output.

Representing this in a mathematical way, a stable system must have the following property, where x t is the input and y t is the output. The output must satisfy the condition

y t M y
when we have an input to the system that can be described as
x t M x
M x and M y both represent a set of finite positive numbers and these relationships hold for all of t .

If these conditions are not met, i.e. a system's output grows without limit (diverges) from abounded input, then the system is unstable . Note that the BIBO stability of a linear time-invariantsystem (LTI) is neatly described in terms of whether or notits impulse response is absolutely integrable .

Questions & Answers

discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what's cornea?
Majak Reply
what are cell
Achol
Explain the following terms . (1) Abiotic factors in an ecosystem
Nomai Reply
Abiotic factors are non living components of ecosystem.These include physical and chemical elements like temperature,light,water,soil,air quality and oxygen etc
Qasim
Define the term Abiotic
Marial
what is biology
daniel Reply
what is diffusion
Emmanuel Reply
passive process of transport of low-molecular weight material according to its concentration gradient
AI-Robot
what is production?
Catherine
hello
Marial
Pathogens and diseases
how did the oxygen help a human being
Achol Reply
how did the nutrition help the plants
Achol Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Principles of digital communications. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10805/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Principles of digital communications' conversation and receive update notifications?

Ask