<< Chapter < Page Chapter >> Page >

Arithmetic operations

There are four basic arithmetic operators in .m files:

+ addition

- subtraction

* multiplication

/ division (for matrices, it also means inversion)

The following three operators work on an element-by-element basis:

.* multiplication of two vectors, element-wise

./ division of two vectors, element-wise

.^ raising all the elements of a vector to a power

As an example, to evaluate the expression a 3 + bd 4c size 12{a rSup { size 8{3} } + sqrt { ital "bd"} - 4c} {} , where a = 1 . 2 size 12{a=1 "." 2} {} , b = 2 . 3 size 12{b=2 "." 3} {} , c = 4 . 5 size 12{c=4 "." 5} {} and d = 4 size 12{d=4} {} , type the following commands in the Command Window to get the answer (ans) :

>>a=1.2;

>>b=2.3;

>>c=4.5;

>>d=4;

>>a^3+sqrt(b*d)-4*c

ans =

-13.2388

Note the semicolon after each variable assignment. If the semicolon is omitted, the interpreter echoes back the variable value.

Vector operations

Consider the vectors x = [ x 1 , x 2 , . . . , x n ] size 12{ {}= \[ x rSub { size 8{1} } ,x rSub { size 8{2} } , "." "." "." ,x rSub { size 8{n} } \] } {} and y = [ y 1 , y 2 , . . . , y n ] size 12{ {}= \[ y rSub { size 8{1} } ,y rSub { size 8{2} } , "." "." "." ,y rSub { size 8{n} } \] } {} . The following operations indicate the resulting vectors:

x*.y = [ x 1 y 1 , x 2 y 2 , . . . , x n y n ] size 12{ {}= \[ x rSub { size 8{1} } y rSub { size 8{1} } ,x rSub { size 8{2} } y rSub { size 8{2} } , "." "." "." ,x rSub { size 8{n} } y rSub { size 8{n} } \] } {}

x./y = x 1 y 1 , x 2 y 3 , . . . , x n y n size 12{ {}= left [ { {x rSub { size 8{1} } } over {y rSub { size 8{1} } } } , { {x rSub { size 8{2} } } over {y rSub { size 8{3} } } } , "." "." "." , { {x rSub { size 8{n} } } over {y rSub { size 8{n} } } } right ]} {}

x.^p = x 1 p , x 2 p , . . . , x n p size 12{ {}= left [x rSub { size 8{1} } rSup { size 8{p} } ,x rSub { size 8{2} } rSup { size 8{p} } , "." "." "." ,x rSub { size 8{n} } rSup { size 8{p} } right ]} {}

Note that because the boldfacing of vectors/matrices are not used in .m files, in the notation adopted in this book, no boldfacing of vectors/matrices is shown to retain consistency with .m files.

The arithmetic operators + and – can be used to add or subtract matrices, vectors or scalars. Vectors denote one-dimensional arrays and matrices denote multidimensional arrays. For example,

>>x=[1,3,4]

>>y=[4,5,6]

>>x+y

ans=

5 8 10

In this example, the operator + adds the elements of the vectors x and y, element by element, assuming that the two vectors have the same dimension, in this case 1 × 3 size 12{1 times 3} {} or one row with three columns. An error occurs if one attempts to add vectors having different dimensions. The same applies for matrices.

To compute the dot product of two vectors (in other words, i x i y i size 12{ Sum cSub { size 8{i} } {x rSub { size 8{i} } y rSub { size 8{i} } } } {} ), use the multiplication operator ‘*’ as follows:

>>x*y'

ans =

43

Note the single quote after y denotes the transpose of a vector or a matrix.

To compute an element-by-element multiplication of two vectors (or two arrays), use the following operator:

>>x .* y

ans =

4 15 24

That is, x .* y means [ 1 × 4,3 × 5,4 × 6 ] size 12{ \[ 1 times 4,3 times 5,4 times 6 \] } {} = [ 4 15 24 ] size 12{ \[ matrix { 4 {} # "15" {} # "24" \]{} } } {} .

Complex numbers

LabVIEW MathScript supports complex numbers. The imaginary number is denoted with the symbol i or j, assuming that these symbols have not been used any other place in the program. It is critical to avoid such a symbol conflict for obtaining correct outcome. Enter the following and observe the outcomes:

>>z=3 + 4i % note the multiplication sign ‘*’ is not needed after 4

>>conj(z) % computes the conjugate of z

>>angle(z) % computes the phase of z

>>real(z) % computes the real part of z

>>imag(z) % computes the imaginary part of z

>>abs(z) % computes the magnitude of z

One can also define an imaginary number with any other user-specified variables. For example, try the following:

>>img=sqrt(-1)

>>z=3+4*img

>>exp(pi*img)

Array indexing

In .m files, all arrays (vectors) are indexed starting from 1 − in other words, x(1) denotes the first element of the array x. Note that the arrays are indexed using parentheses (.) and not square brackets [.], as done in C/C++. To create an array featuring the integers 1 through 6 as elements, enter:

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?

Ask