<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Observe that motion in two dimensions consists of horizontal and vertical components.
  • Understand the independence of horizontal and vertical vectors in two-dimensional motion.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical representations. (S.P. 1.5, 2.1, 2.2)
  • 3.A.1.2 The student is able to design an experimental investigation of the motion of an object. (S.P. 4.2)
  • 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)
A busy traffic intersection in New York showing vehicles moving on the road.
Walkers and drivers in a city like New York are rarely able to travel in straight lines to reach their destinations. Instead, they must follow roads and sidewalks, making two-dimensional, zigzagged paths. (credit: Margaret W. Carruthers)

Two-dimensional motion: walking in a city

Suppose you want to walk from one point to another in a city with uniform square blocks, as pictured in [link] .

An X Y graph with origin at zero zero with x axis labeled nine blocks east and y axis labeled five blocks north. Starting point at the origin and destination at point nine on the x axis and point five on the y axis.
A pedestrian walks a two-dimensional path between two points in a city. In this scene, all blocks are square and are the same size.

The straight-line path that a helicopter might fly is blocked to you as a pedestrian, and so you are forced to take a two-dimensional path, such as the one shown. You walk 14 blocks in all, 9 east followed by 5 north. What is the straight-line distance?

An old adage states that the shortest distance between two points is a straight line. The two legs of the trip and the straight-line path form a right triangle, and so the Pythagorean theorem, a 2  +  b 2  =  c 2 size 12{a rSup { size 8{2} } " + "b rSup { size 8{2} } " = "c rSup { size 8{2} } } {} , can be used to find the straight-line distance.

A right-angled triangle with base labeled a height labeled b and hypotenuse labeled c is shown. Using Pythagorean theorem c is calculated as square root of a squared plus b squared.
The Pythagorean theorem relates the length of the legs of a right triangle, labeled a size 12{a} {} and b size 12{b} {} , with the hypotenuse, labeled c size 12{c} {} . The relationship is given by: a 2 b 2 c 2 size 12{a rSup { size 8{2} }  "+ "b rSup { size 8{2} }  "= "c rSup { size 8{2} } } {} . This can be rewritten, solving for c size 12{A} {} : c  =  a 2 b 2 size 12{c" = " sqrt {a rSup { size 8{2} }  "+ "b rSup { size 8{2} } } } {} .

The hypotenuse of the triangle is the straight-line path, and so in this case its length in units of city blocks is ( 9 blocks ) 2 ( 5 blocks ) 2 = 10 . 3 blocks size 12{ sqrt { \( "9 blocks" \) rSup { size 8{2} }  "+ " \( "5 blocks" \) rSup { size 8{2} } }  "= 10" "." "3 blocks"} {} , considerably shorter than the 14 blocks you walked. (Note that we are using three significant figures in the answer. Although it appears that “9” and “5” have only one significant digit, they are discrete numbers. In this case “9 blocks” is the same as “9.0 or 9.00 blocks.” We have decided to use three significant figures in the answer in order to show the result more precisely.)

An X Y graph with origin at zero zero with x-axis labeled nine blocks east and y axis labeled five blocks north. A diagonal vector arrow joining starting point at point zero on x axis and destination at point five on y axis with its direction northeast is shown. A helicopter is flying along the diagonal vector arrow with helicopter path of ten point three blocks. The angle formed by diagonal vector arrow and the x-axis is equal to twenty-nine point one degrees.
The straight-line path followed by a helicopter between the two points is shorter than the 14 blocks walked by the pedestrian. All blocks are square and the same size.

The fact that the straight-line distance (10.3 blocks) in [link] is less than the total distance walked (14 blocks) is one example of a general characteristic of vectors. (Recall that vectors are quantities that have both magnitude and direction.)

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sample chapters: openstax college physics for ap® courses. OpenStax CNX. Oct 23, 2015 Download for free at http://legacy.cnx.org/content/col11896/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sample chapters: openstax college physics for ap® courses' conversation and receive update notifications?

Ask