<< Chapter < Page Chapter >> Page >
Image of a multimode optical fiber in the form of a rectangle is shown. From the edges two diverging lines are coming out, forming the full acceptance angle. A ray of light below the optical axis is entering the fiber. Half of the acceptance angle is shown as alpha max. Inside the fiber, the ray of light strikes the cladding around the fiber and is reflected back into the fiber.
Light rays enter an optical fiber. The numerical aperture of the optical fiber can be determined by using the angle α max .

Can the NA size 12{ ital "NA"} {} be larger than 1.00? The answer is ‘yes’ if we use immersion lenses in which a medium such as oil, glycerine or water is placed between the objective and the microscope cover slip. This minimizes the mismatch in refractive indices as light rays go through different media, generally providing a greater light-gathering ability and an increase in resolution. [link] shows light rays when using air and immersion lenses.

Diagram of paths of light from a specimen and refracting through air, water, and oil.
Light rays from a specimen entering the objective. Paths for immersion medium of air (a), water (b) ( n = 1 . 33 ) size 12{ \( n=1 "." "33" \) } {} , and oil (c) ( n = 1 . 51 ) size 12{ \( n=1 "." "51" \) } {} are shown. The water and oil immersions allow more rays to enter the objective, increasing the resolution.

When using a microscope we do not see the entire extent of the sample. Depending on the eyepiece and objective lens we see a restricted region which we say is the field of view. The objective is then manipulated in two-dimensions above the sample to view other regions of the sample. Electronic scanning of either the objective or the sample is used in scanning microscopy. The image formed at each point during the scanning is combined using a computer to generate an image of a larger region of the sample at a selected magnification.

When using a microscope, we rely on gathering light to form an image. Hence most specimens need to be illuminated, particularly at higher magnifications, when observing details that are so small that they reflect only small amounts of light. To make such objects easily visible, the intensity of light falling on them needs to be increased. Special illuminating systems called condensers are used for this purpose. The type of condenser that is suitable for an application depends on how the specimen is examined, whether by transmission, scattering or reflecting. See [link] for an example of each. White light sources are common and lasers are often used. Laser light illumination tends to be quite intense and it is important to ensure that the light does not result in the degradation of the specimen.

All four parts show ray diagrams of a specimen in different types of microscopes. Part a shows a ray diagram with rays through a condenser lens to the object and then up to the objective lens of the microscope. Part b shows an alternative arrangement where rays of light are reflected off a concave condenser mirror to the specimen and then up to the objective lens of the microscope. Part c shows dark field illumination where the illuminating light beam is fragmented by an annular stop so that its rays only go through the outer portion of the condenser lens which causes them to miss the objective lens. Part d shows high magnification illumination where light rays from a laser are reflected off a plan glass reflector, then go through the objective lens to the lens and then return as scatter light through the objective lens.
Illumination of a specimen in a microscope. (a) Transmitted light from a condenser lens. (b) Transmitted light from a mirror condenser. (c) Dark field illumination by scattering (the illuminating beam misses the objective lens). (d) High magnification illumination with reflected light – normally laser light.

We normally associate microscopes with visible light but x ray and electron microscopes provide greater resolution. The focusing and basic physics is the same as that just described, even though the lenses require different technology. The electron microscope requires vacuum chambers so that the electrons can proceed unheeded. Magnifications of 50 million times provide the ability to determine positions of individual atoms within materials. An electron microscope is shown in [link] . We do not use our eyes to form images; rather images are recorded electronically and displayed on computers. In fact observing and saving images formed by optical microscopes on computers is now done routinely. Video recordings of what occurs in a microscope can be made for viewing by many people at later dates. Physics provides the science and tools needed to generate the sequence of time-lapse images of meiosis similar to the sequence sketched in [link] .

Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask