<< Chapter < Page Chapter >> Page >
Data are provided on some commonly used discrete and absolutely continuous distributions. Matlab procedures are provided for some.

Discrete distributions

  1. Indicator functions X = I E P ( X = 1 ) = P ( E ) = p P ( X = 0 ) = q = 1 - p
    E [ X ] = p Var [ X ] = p q M X ( s ) = q + p e s g X ( s ) = q + p s
  2. Simple random variable X = i = 1 n t i I A i (a primitive form) P ( A i ) = p i
    E [ X ] = i = 1 n t i p i Var [ X ] = i = 1 n t i 2 p i q i - 2 i < j t i t j p i p j M X ( s ) = i = 1 n p i e s t i
  3. Binomial ( n , p ) X = i = 1 n I E i with { I E i : 1 i n } iid P ( E i ) = p
    P ( X = k ) = C ( n , k ) p k q n - k
    E [ X ] = n p Var [ X ] = n p q M X ( s ) = ( q + p e s ) n g X ( s ) = ( q + p s ) n
    MATLAB :          P ( X = k ) = ibinom ( n , p , k ) P ( X k ) = cbinom ( n , p , k )
  4. Geometric ( p ) P ( X = k ) = p q k k 0
    E [ X ] = q / p Var [ X ] = q / p 2 M X ( s ) = p 1 - q e s g X ( s ) = p 1 - q s
    If Y - 1 geometric ( p ) , so that P ( Y = k ) = p q k - 1 k 1 , then
    E [ Y ] = 1 / p Var [ X ] = q / p 2 M Y ( s ) = p e s 1 - q e s g Y ( s ) = p s 1 - q s
  5. Negative binomial ( m , p ) . X is the number of failures before the m th success. P ( X = k ) = C ( m + k - 1 , m - 1 ) p m q k k 0 .
    E [ X ] = m q / p Var [ X ] = m q / p 2 M X ( s ) = p 1 - q e s m g X ( s ) = p 1 - q s m
    For Y m = X m + m , the number of the trial on which m th success occurs. P ( Y = k ) = C ( k - 1 , m - 1 ) p m q k - m k m .
    E [ Y ] = m / p Var [ Y ] = m q / p 2 M Y ( s ) = p e s 1 - q e s m g Y ( s ) = p s 1 - q s m
    MATLAB :          P ( Y = k ) = nbinom ( m , p , k )
  6. Poisson ( μ ) . P ( X = k ) = e - μ μ k k ! k 0
    E [ X ] = μ Var [ X ] = μ M X ( s ) = e μ ( e s - 1 ) g X ( s ) = e μ ( s - 1 )
    MATLAB :          P ( X = k ) = ipoisson ( m , k ) P ( X k ) = cpoisson ( m , k )

Absolutely continuous distributions

  1. Uniform ( a , b ) f X ( t ) = 1 b - a a < t < b (zero elsewhere)
    E [ X ] = b + a 2 Var [ X ] = ( b - a ) 2 12 M X ( s ) = e s b - e s a s ( b - a )
  2. Symmetric triangular ( - a , a ) f X ( t ) = ( a + t ) / a 2 - a t < 0 ( a - t ) / a 2 0 t a
    E [ X ] = 0 Var [ X ] = a 2 6 M X ( s ) = e a s + e - a s - 2 a 2 s 2 = e a s - 1 a s · 1 - e - a s a s
  3. Exponential ( λ ) f X ( t ) = λ e - λ t t 0
    E [ X ] = 1 λ Var [ X ] = 1 λ 2 M X ( s ) = λ λ - s
  4. Gamma ( α , λ ) f X ( t ) = λ α t α - 1 e - λ t Γ ( α ) t 0
    E [ X ] = α λ Var [ X ] = α λ 2 M X ( s ) = λ λ - s α
    MATLAB :          P ( X t ) = gammadbn ( α , λ , t )
  5. Normal N ( μ , σ 2 ) f X ( t ) = 1 σ 2 π exp - 1 2 t - μ σ 2
    E [ X ] = μ Var [ X ] σ 2 M X ( s ) = exp σ 2 s 2 2 + μ s
    MATLAB :          P ( X t ) = gaussian ( μ , σ 2 , t )
  6. Beta ( r , s )
    f X ( t ) = Γ ( r + s ) Γ ( r ) Γ ( s ) t r - 1 ( 1 - t ) s - 1 0 < t < 1 , r > 0 , s > 0
    E [ X ] = r r + s Var [ X ] = r s ( r + s ) 2 ( r + s + 1 )
    MATLAB : f X ( t ) = beta ( r , s , t ) P ( X t ) = betadbn ( r , s , t )
  7. Weibull ( α , λ , ν )
    F X ( t ) = 1 - e - λ ( t - ν ) α , α > 0 , λ > 0 , ν 0 , t ν
    E [ X ] = 1 λ 1 / α Γ ( 1 + 1 / α ) + ν Var [ X ] = 1 λ 2 / α Γ ( 1 + 2 / λ ) - Γ 2 ( 1 + 1 / λ )
    MATLAB : ( ν = 0 only)
    f X ( t ) = weibull ( a , l , t ) P ( X t ) = weibulld ( a , l , t )

Relationship between gamma and poisson distributions

  • If X gamma ( n , λ ) , then P ( X t ) = P ( Y n ) where Y Poisson ( λ t ) .
  • If Y Poisson ( λ t ) , then P ( Y n ) = P ( X t ) where X gamma ( n , λ ) .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask