<< Chapter < Page Chapter >> Page >
  • Explain standing waves.
  • Describe the mathematical representation of overtones and beat frequency.
Water surface of a river is shown, with mountains in the background. There are small ripples over the water surface.
These waves result from the superposition of several waves from different sources, producing a complex pattern. (credit: waterborough, Wikimedia Commons)

Most waves do not look very simple. They look more like the waves in [link] than like the simple water wave considered in Waves . (Simple waves may be created by a simple harmonic oscillation, and thus have a sinusoidal shape). Complex waves are more interesting, even beautiful, but they look formidable. Most waves appear complex because they result from several simple waves adding together. Luckily, the rules for adding waves are quite simple.

When two or more waves arrive at the same point, they superimpose themselves on one another. More specifically, the disturbances of waves are superimposed when they come together—a phenomenon called superposition    . Each disturbance corresponds to a force, and forces add. If the disturbances are along the same line, then the resulting wave is a simple addition of the disturbances of the individual waves—that is, their amplitudes add. [link] and [link] illustrate superposition in two special cases, both of which produce simple results.

[link] shows two identical waves that arrive at the same point exactly in phase. The crests of the two waves are precisely aligned, as are the troughs. This superposition produces pure constructive interference    . Because the disturbances add, pure constructive interference produces a wave that has twice the amplitude of the individual waves, but has the same wavelength.

[link] shows two identical waves that arrive exactly out of phase—that is, precisely aligned crest to trough—producing pure destructive interference    . Because the disturbances are in the opposite direction for this superposition, the resulting amplitude is zero for pure destructive interference—the waves completely cancel.

The graph shows two identical waves that arrive at the same point exactly in phase. The crests of the two waves are precisely aligned, as are the troughs. The amplitude of each wave being X . It produces pure constructive wave. The disturbances add resulting in a new wave with twice the amplitude of the individual waves that is two X but of same wavelength.
Pure constructive interference of two identical waves produces one with twice the amplitude, but the same wavelength.
The graph shows two identical waves that arrive exactly out of phase. The crests of one wave are aligned with the trough of another wave. Each wave has amplitude equal to X. As the disturbances are in the opposite directions, they cancel out each other, resulting in zero amplitude which is shown as the third figure showing a green straight line, that is, the waves cancel each other producing pure destructive interference.
Pure destructive interference of two identical waves produces zero amplitude, or complete cancellation.

While pure constructive and pure destructive interference do occur, they require precisely aligned identical waves. The superposition of most waves produces a combination of constructive and destructive interference and can vary from place to place and time to time. Sound from a stereo, for example, can be loud in one spot and quiet in another. Varying loudness means the sound waves add partially constructively and partially destructively at different locations. A stereo has at least two speakers creating sound waves, and waves can reflect from walls. All these waves superimpose. An example of sounds that vary over time from constructive to destructive is found in the combined whine of airplane jets heard by a stationary passenger. The combined sound can fluctuate up and down in volume as the sound from the two engines varies in time from constructive to destructive. These examples are of waves that are similar.

Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics -- hlca 1104. OpenStax CNX. May 18, 2013 Download for free at http://legacy.cnx.org/content/col11525/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics -- hlca 1104' conversation and receive update notifications?

Ask